Journal Description
Foods
Foods
is an international, scientific, peer-reviewed, open access journal of food science and is published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, FSTA, AGRIS, PubAg, and other databases.
- Journal Rank: JCR - Q1 (Food Science & Technology) / CiteScore - Q1 (Health Professions (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.9 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.2 (2022);
5-Year Impact Factor:
5.5 (2022)
Latest Articles
Bioactive Compounds of Portuguese Fruits with PDO and PGI
Foods 2023, 12(16), 2994; https://doi.org/10.3390/foods12162994 - 08 Aug 2023
Abstract
The European Union has established two designations, Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI), to guarantee the authenticity of products with valued specificities associated with the regions where they are produced. The valorization of these products, particularly fruits, not only
[...] Read more.
The European Union has established two designations, Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI), to guarantee the authenticity of products with valued specificities associated with the regions where they are produced. The valorization of these products, particularly fruits, not only preserves their natural origins but also promotes the cultivalion of specific regional fruit varieties. This contributes to the preservation of biodiversity and the development of innovative bio-based products in the regions of production. In recent years, substantial efforts have been made to characterize PDO and PGI fruits, particularly in relation to the presence of bioactive compounds with antioxidant and antimicrobial properties. Portugal, with its diverse range of climates and geographical characteristics, is home to numerous fruits with unique flavors, textures, and appearances, many of which are now recognized with PDO or PGI seals. This review compiles data from the production of Portuguese fruits with PDO designations, such as the ‘Maça Bravo de Esmolfe’ (apple) and ‘Pera Rocha do Oeste’ (pear), and PGI designations, such as ‘Citrinos do Algarve’ (citrus)and ‘Cereja da Cova da Beira’ (cherry), and summarizes studies focusing on the bioactive compounds present in these fruits. The presence of bioactive compounds is a significant aspect of nutritious food, associated with health benefits that consumers are increasingly aware of and value.
Full article
(This article belongs to the Section Plant Foods)
►
Show Figures
Open AccessReview
Bioactive Compounds and Health-Promoting Properties of Elephant Apple (Dillenia indica L.): A Comprehensive Review
by
, , , , and
Foods 2023, 12(16), 2993; https://doi.org/10.3390/foods12162993 - 08 Aug 2023
Abstract
Elephant apple (Dillenia indica L.) grows wild in Southeast Asia’s forests, including in China, India, Nepal, Bangladesh, and Sri Lanka. Elephant apples are considered essential fruit crops because of their high nutritional value, which includes high levels of vitamin C, carbohydrates, fats,
[...] Read more.
Elephant apple (Dillenia indica L.) grows wild in Southeast Asia’s forests, including in China, India, Nepal, Bangladesh, and Sri Lanka. Elephant apples are considered essential fruit crops because of their high nutritional value, which includes high levels of vitamin C, carbohydrates, fats, fibre, protein, minerals, and fatty acids. It is important to understand the nutritional value and health benefits of elephant apples in order to increase fruit intake in people’s daily diets. The present review paper focuses on elephant apple’s phytochemistry, bioactive compounds, therapeutic value, and medicinal capabilities for designing and developing a wide range of food formulations. Proteins, minerals, fats, crude fibre, carbohydrates, vitamin C, tannins, malic acid, and glucose are abundant in the leaves, bark, and fruit of the elephant apple. In addition to nutritional components, many phytochemicals found in elephant apples have been identified as bioactive compounds with a broad range of biological activities, the most prominent of which are antioxidant, anticancer, antidiabetic, and anti-inflammatory properties. Overall, elephant apple is a rich, natural source of bioactive compounds with potential applications in the production of value-added foods and nutraceuticals for disease prevention and management.
Full article
(This article belongs to the Special Issue Bioactive Compounds from Plant Origin and Therapeutic and Nutraceutical Properties for Human Health Volume II)
►▼
Show Figures

Figure 1
Open AccessArticle
Modification of Soft Wheat Protein for Improving Cake Quality by Superheated Steam Treatment of Wheat Grain
Foods 2023, 12(16), 2992; https://doi.org/10.3390/foods12162992 - 08 Aug 2023
Abstract
Many varieties of soft wheat in China cannot fully satisfy the requirements of making high-quality cakes due to their undesirable protein properties, which leads to shortages of high-quality soft wheat flour. Therefore, a modification of soft wheat protein is essential for improving the
[...] Read more.
Many varieties of soft wheat in China cannot fully satisfy the requirements of making high-quality cakes due to their undesirable protein properties, which leads to shortages of high-quality soft wheat flour. Therefore, a modification of soft wheat protein is essential for improving the quality of soft wheat and thus improving cake quality. In order to modify the protein properties of soft wheat used for cake production, superheated steam (SS) was used to treat soft wheat grains at 165 °C and 190 °C for 1, 2, 3, 4, and 5 min, respectively, followed by the milling of wheat grains to obtain refined wheat flour. The properties of proteins and cakes were analyzed using refined wheat flour as materials. First, changes in the structures of wheat proteins were analyzed by determining the solubility, molecular weight distribution and secondary structure of proteins in wheat flour. Secondly, changes in the functional properties of proteins were analyzed by determining the foaming properties and emulsifying properties of proteins in wheat flour. Finally, the specific volume and texture of cakes with wheat flour milled from SS-treated wheat were analyzed. At the initial stage of SS treatment, some of the gliadin and glutenin aggregated, and the gluten macro-polymer (GMP) contents increased. This allowed a more stable gluten network to form during dough kneading, leading to an improvement in dough elasticity. In addition, a short time period (1–3 min) of SS treatment improved the emulsifying properties and foaming ability of wheat protein, which helped to improve the specific volume and texture of cakes. Increasing the SS temperature from 165 °C to 190 °C reduced the optimal treatment time needed to improve cake quality from 3 min to 1 min. SS treatment for longer time (>3 min) periods led to severe protein aggregation and a decrease in the foaming ability and emulsifying properties of protein, which led to a deterioration in the cake quality. Thus, SS treatment at 165 °C for 1–3 min and 190 °C for 1 min could be a suitable method of improving the physicochemical properties of soft wheat used to make cakes with high specific volumes and good texture.
Full article
(This article belongs to the Special Issue Advances in Cereal and Cereal Product Chemistry, Nutrition and Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Toward Sustainable and Healthy Fish Products—The Role of Feeding and Preservation Techniques
by
, , , , , , , , , , , and
Foods 2023, 12(16), 2991; https://doi.org/10.3390/foods12162991 - 08 Aug 2023
Abstract
Fish is a fundamental component of the human diet, and in the near future the proportion of aquatic foods originating from aquaculture production is expected to increase to over 56%. The sustainable growth of the aquaculture sector involves the use of new sustainable
[...] Read more.
Fish is a fundamental component of the human diet, and in the near future the proportion of aquatic foods originating from aquaculture production is expected to increase to over 56%. The sustainable growth of the aquaculture sector involves the use of new sustainable raw materials as substitutes for traditional fishmeal and fish oil ingredients, but it is crucial that the substitution maintains the nutritional value of the fish meat. In addition, the preservation of the nutritional value should be a mandatory requirement of new technologies that extend the shelf life of fish. In this context, we evaluated the impact of a newly formulated feed and three preservation treatments (brine, pulsed electric field (PEF), and PEF plus brine) on the fatty acid composition and protein and lipid digestibility of sea bass fillets. In non-digested fillets, although slightly reduced by the newly formulated feed (standard = 2.49 ± 0.14; newly formulated = 2.03 ± 0.10) the n-3/n-6 PUFA ratio indicated good nutritional value. The preservation treatments did not modify the fatty acid content and profile of non-digested fillets. Conversely, protein and lipid digestibility were not affected by the different diets but were significantly reduced by brine, with or without PEF, while PEF alone had no effect. Overall, our results indicated that the newly formulated feed containing 50% less fishmeal is a good compromise between the sustainability and nutritional value of cultivated seabass, and PEF is a promising preservation technology deserving of further study.
Full article
(This article belongs to the Special Issue Seafood: Quality, Shelf Life and Sensory Attributes)
►▼
Show Figures

Figure 1
Open AccessArticle
Plasmalogen Profiling in Porcine Brain Tissues by LC-MS/MS
Foods 2023, 12(16), 2990; https://doi.org/10.3390/foods12162990 - 08 Aug 2023
Abstract
Plasmalogen, a functional glycerophospholipid, is known for its beneficial nutritional effects, such as anti-oxidation and anti-inflammation. As the porcine brain is a plasmalogen-rich resource, this study aimed to explore its potential for plasmalogen-based health food product development, with special attention on whether and
[...] Read more.
Plasmalogen, a functional glycerophospholipid, is known for its beneficial nutritional effects, such as anti-oxidation and anti-inflammation. As the porcine brain is a plasmalogen-rich resource, this study aimed to explore its potential for plasmalogen-based health food product development, with special attention on whether and how the industrial production processes influence the plasmalogen content and composition. In the present work, plasmalogens from different porcine brain products were investigated using liquid chromatography–tandem mass spectrometry. The results indicated that all the porcine brain products showed abundant total plasmalogens, of which more than 95% were ethanolamine plasmalogen species. Acetone precipitation, ethanol extraction, and drying did not significantly affect the plasmalogen content, whereas repeated freeze-thaw cycles in the production process led to noticeable loss. The chemometric investigation suggested that raw products and glycerophospholipid products exhibited different profiles; furthermore, the concentration step seemed to impact the plasmalogen composition. The nutritional assessment revealed that porcine brain products showed favorable values of multiple indexes, including PUFA/SFA ratio, n-6/n-3 ratio, thrombogenicity index, and unsaturation index, suggesting a health-beneficial value. The current study not only shows the feasibility of producing porcine brain-derived plasmalogens, but also provides possible strategies for developing and quality-controlling dietary plasmalogen supplements and healthcare products.
Full article
(This article belongs to the Section Food Analytical Methods)
►▼
Show Figures

Figure 1
Open AccessArticle
Kinetic Ultrasound-Assisted Extraction as a Sustainable Approach for the Recovery of Phenolics Accumulated through UVA Treatment in Strawberry By-Products
by
, , , , , and
Foods 2023, 12(16), 2989; https://doi.org/10.3390/foods12162989 - 08 Aug 2023
Abstract
Ultrasound-assisted extraction (UAE) is an efficient and sustainable method for extracting bioactive compounds from agro-industrial by-products. Moreover, it has been reported that ultraviolet A (UVA) radiation can induce the biosynthesis and accumulation of bioactive phenolic compounds. This study optimized the efficiency of ultrasound-assisted
[...] Read more.
Ultrasound-assisted extraction (UAE) is an efficient and sustainable method for extracting bioactive compounds from agro-industrial by-products. Moreover, it has been reported that ultraviolet A (UVA) radiation can induce the biosynthesis and accumulation of bioactive phenolic compounds. This study optimized the efficiency of ultrasound-assisted extraction (UAE) for recovering ultraviolet A (UVA)-induced phenolic compounds in strawberry by-products (RF-N). The impact of three factors (solid-liquid ratio, ethanol concentration, and ultrasound power) on total phenolic compound (TPC) kinetics using Peleg’s model was investigated. The developed model showed a suitable fit for both RF-N and strawberry by-products treated with UVA (RF-E). The optimal UAE conditions obtained were of a 1:30 ratio, 46% ethanol, and 100% ultrasound power, resulting in an average yield of 13 g total phenolics kg−1. The bioaccessibility of phenolic compounds during in-vitro digestion was 36.5%, with agrimoniin being the predominant compound. UAE combined with UVA treatment increased the bioactivity of RF extracts, displaying significant anti-proliferative effects on HT29 and Caco-2 cancer cell lines, as well as anti-inflammatory potential and cellular antioxidant activity. The ultrasound proved to be a sustainable and effective technique for extracting phenolic compounds from RF, contributing to the valorization of strawberry agro-industrial by-products, and maximizing their nutraceutical potential.
Full article
(This article belongs to the Special Issue Application of Ultrasonic Technology in Food Processing Volume II)
►▼
Show Figures

Figure 1
Open AccessArticle
Genome Analysis of Bifidobacterium Bifidum E3, Structural Characteristics, and Antioxidant Properties of Exopolysaccharides
Foods 2023, 12(16), 2988; https://doi.org/10.3390/foods12162988 - 08 Aug 2023
Abstract
In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3), as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3,
[...] Read more.
In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3), as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3, were evaluated. The results revealed that intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) had potent DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), hydroxyl, and superoxide anion radical scavenging capacities, among which CFS was the best. At the genetic level, we identified a strong carbohydrate metabolism capacity, an EPS synthesis gene cluster, and five sugar nucleotides in B. bifidum E3. Therefore, we extracted cEPS from B. bifidum E3 and purified it to obtain EPS-1, EPS-2, and EPS-3. EPS-1, EPS-2, and EPS-3 were heteropolysaccharides with an average molecular weight of 4.15 × 104 Da, 3.67 × 104 Da, and 5.89 × 104 Da, respectively. The EPS-1 and EPS-2 are mainly comprised of mannose and glucose, and the EPS-3 is mainly comprised of rhamnose, mannose, and glucose. The typical characteristic absorption peaks of polysaccharides were shown in Fourier transform infrared spectroscopy (FT-IR spectroscopy). The microstructural study showed a rough surface structure for EPS-1, EPS-2, and EPS-3. Furthermore, EPS-1, EPS-2, and EPS-3 exhibited potent DPPH, hydroxyl, and superoxide anion radical scavenging capacities. Correlation analysis identified that antioxidant capacities may be influenced by various factors, especially molecular weight, chemical compositions, and monosaccharide compositions. In summary, the EPS that was produced by B. bifidum E3 may provide insights into health-promoting benefits in humans.
Full article
(This article belongs to the Special Issue Probiotics: Selection, Cultivation, Evaluation and Application)
►▼
Show Figures

Figure 1
Open AccessArticle
Dynamic Formation of Green Tea Cream and the Identification of Key Components Using the “Knock-Out/Knock-In” Method
Foods 2023, 12(16), 2987; https://doi.org/10.3390/foods12162987 - 08 Aug 2023
Abstract
The composition of green tea cream is extremely complex, and identification of key components is a prerequisite for elucidating its microstructure formation mechanism. This study examined the dynamic changes in the content of components and properties of colloid particles during the formation process
[...] Read more.
The composition of green tea cream is extremely complex, and identification of key components is a prerequisite for elucidating its microstructure formation mechanism. This study examined the dynamic changes in the content of components and properties of colloid particles during the formation process of tea cream by chemical analysis and dynamic laser scattering (DLS). A “knock-out/knock-in” method was developed and used to further explore the relationship between the interaction of these components and the microstructure formation of tea cream. The results revealed that polysaccharides, proteins, epigallocatechin gallate (EGCG), and caffeine were the main components involved in tea cream formation. These components participated in the formation process in the form of polysaccharide–protein and EGCG–caffeine colloidal particles. Consequently, there were synchronized dynamic changes in the levels of polysaccharides, proteins, EGCG, and caffeine. The “knock-out/knock-in” experiment revealed that the interactions between EGCG or caffeine and macro-molecule components were not the key factors in tea cream microstructure formation. However, it was found that the complexation between EGCG and caffeine played a crucial role in the formation of tea cream. The findings suggested that decreasing the concentrations of EGCG and caffeine could be useful in controlling tea cream formation during tea beverage processing and storage.
Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
►▼
Show Figures

Graphical abstract
Open AccessEditorial
The Second Edition of Motivations Associated with Food Choices and Eating Practices
Foods 2023, 12(16), 2986; https://doi.org/10.3390/foods12162986 - 08 Aug 2023
Abstract
Eating patterns are linked with both environmental and behavioural factors [...]
Full article
(This article belongs to the Special Issue The 2nd Edition of Motivations Associated with Food Choices and Eating Practices)
Open AccessArticle
Metabolomics Profiling of White Button, Crimini, Portabella, Lion’s Mane, Maitake, Oyster, and Shiitake Mushrooms Using Untargeted Metabolomics and Targeted Amino Acid Analysis
by
, , , , , , , and
Foods 2023, 12(16), 2985; https://doi.org/10.3390/foods12162985 - 08 Aug 2023
Abstract
Mushrooms contain multiple essential nutrients and health-promoting bioactive compounds, including the amino acid L-ergothioneine. Knowledge of the chemical composition of different mushroom varieties will aid research on their health-promoting properties. We compared the metabolomes of fresh raw white button, crimini, portabella, lion’s mane,
[...] Read more.
Mushrooms contain multiple essential nutrients and health-promoting bioactive compounds, including the amino acid L-ergothioneine. Knowledge of the chemical composition of different mushroom varieties will aid research on their health-promoting properties. We compared the metabolomes of fresh raw white button, crimini, portabella, lion’s mane, maitake, oyster, and shiitake mushrooms using untargeted liquid chromatography mass spectrometry (LC/MS)-based metabolomics. We also quantified amino acid concentrations, including L-ergothioneine, a potential antioxidant which is not synthesized by plants or animals. Among the seven mushroom varieties, more than 10,000 compounds were detected. Principal Component Analysis indicated mushrooms of the same species, Agaricus Bisporus (white button, portabella, crimini), group similarly. The other varieties formed individual, distinct clusters. A total of 1344 (520 annotated) compounds were detected in all seven mushroom varieties. Each variety had tens-to-hundreds of unique-to-mushroom-variety compounds. These ranged from 29 for crimini to 854 for lion’s mane. All three Agaricus bisporus varieties had similar amino acid profiles (including detection of all nine essential amino acids), while other varieties had less methionine and tryptophan. Lion’s mane and oyster mushrooms had the highest concentrations of L-ergothioneine. The detection of hundreds of unique-to-mushroom-variety compounds emphasizes the differences in chemical composition of these varieties of edible fungi.
Full article
(This article belongs to the Section Foodomics)
►▼
Show Figures

Figure 1
Open AccessReview
Impact of Processing and Physicochemical Parameter on Hibiscus sabdariffa Calyxes Biomolecules and Antioxidant Activity: From Powder Production to Reconstitution
Foods 2023, 12(16), 2984; https://doi.org/10.3390/foods12162984 - 08 Aug 2023
Abstract
Hibiscus sabdariffa is a tropical plant with red calyxes whose anthocyanins, phenols, and antioxidant activity make it attractive to consumers both from a nutritional and medicinal standpoint. Its seasonality, perishability, and anthocyanin instability, led to the setup of stabilization methods comprising drying and
[...] Read more.
Hibiscus sabdariffa is a tropical plant with red calyxes whose anthocyanins, phenols, and antioxidant activity make it attractive to consumers both from a nutritional and medicinal standpoint. Its seasonality, perishability, and anthocyanin instability, led to the setup of stabilization methods comprising drying and powdering. However, its properties can often be altered during these stabilization processes. Treatments such as dehumidified-air-drying, infrared drying, and oven-drying, and their combination showed better quality preservation. Moreover, powder production enables superior biomolecule extractability which can be linked to a higher bioaccessibility. However, the required temperatures for powder production increase the bioactive molecules degradation leading to their antioxidant activity loss. To overcome this issue, ambient or cryogenic grinding could be an excellent method to improve the biomolecule bioavailability and accessibility if the processing steps are well mastered. To be sure to benefit from the final nutritional quality of the powder, such as the antioxidant activity of biomolecules, powders have to offer excellent reconstitutability which is linked to powder physicochemical properties and the reconstitution media. Typically, the finest powder granulometry and using an agitated low-temperature reconstitution media allow for improving anthocyanin extractability and stability. In this review, the relevant physicochemical and processing parameters influencing plant powder features from processing transformation to reconstitution will be presented with a focus on bioactive molecules and antioxidant activity preservation.
Full article
(This article belongs to the Special Issue Food Powder Properties and Influencing Factors)
►▼
Show Figures

Graphical abstract
Open AccessReview
Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing
Foods 2023, 12(16), 2983; https://doi.org/10.3390/foods12162983 - 08 Aug 2023
Abstract
In this review article, we systematically investigated the diverse applications of laser technology within the sphere of food processing, encompassing techniques such as laser ablation, microbial inactivation, state-of-the-art food packaging, and non-destructive testing. With a detailed exploration, we assess the utility of laser
[...] Read more.
In this review article, we systematically investigated the diverse applications of laser technology within the sphere of food processing, encompassing techniques such as laser ablation, microbial inactivation, state-of-the-art food packaging, and non-destructive testing. With a detailed exploration, we assess the utility of laser ablation for the removal of surface contaminants from foodstuffs, while also noting the potential financial and safety implications of its implementation on an industrial scale. Microbial inactivation by laser shows promise for reducing the microbial load on food surfaces, although concerns have been raised about potential damage to the physio-characteristics of some fruits. Laser-based packaging techniques, such as laser perforation and laser transmission welding, offer eco-friendly alternatives to traditional packaging methods and can extend the shelf life of perishable goods. Despite the limitations, laser technology shows great promise in the food industry and has the potential to revolutionize food processing, packaging, and testing. Future research needs to focus on optimizing laser equipment, addressing limitations, and developing mathematical models to enhance the technology’s uses.
Full article
(This article belongs to the Section Food Analytical Methods)
►▼
Show Figures

Figure 1
Open AccessReview
The Application of Biometric Approaches in Agri-Food Marketing: A Systematic Literature Review
Foods 2023, 12(16), 2982; https://doi.org/10.3390/foods12162982 - 08 Aug 2023
Abstract
A challenge in social marketing studies is the cognitive biases in consumers’ conscious and self-reported responses. To help address this concern, biometric techniques have been developed to obtain data from consumers’ implicit and non-verbal responses. A systematic literature review was conducted to explore
[...] Read more.
A challenge in social marketing studies is the cognitive biases in consumers’ conscious and self-reported responses. To help address this concern, biometric techniques have been developed to obtain data from consumers’ implicit and non-verbal responses. A systematic literature review was conducted to explore biometric applications’ role in agri-food marketing to provide an integrated overview of this topic. A total of 55 original research articles and four review articles were identified, classified, and reviewed. It was found that there is a steady growth in the number of studies applying biometric approaches, with eye-tracking being the dominant method used to investigate consumers’ perceptions in the last decade. Most of the studies reviewed were conducted in Europe or the USA. Other biometric techniques used included facial expressions, heart rate, body temperature, and skin conductance. A wide range of scenarios concerning consumers’ purchase and consumption behaviour for agri-food products have been investigated using biometric-based techniques, indicating their broad applicability. Our findings suggest that biometric techniques are expanding for researchers in agri-food marketing, benefiting both academia and industry.
Full article
(This article belongs to the Section Sensory and Consumer Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces
Foods 2023, 12(16), 2981; https://doi.org/10.3390/foods12162981 - 08 Aug 2023
Abstract
Sodium hypochlorite (NaOCl) and peracetic acid (PAA) are commonly used disinfectants with a maximum recommended concentration of 200 ppm for food-contact surfaces. The objectives of this study were to assess the effect of pH and water hardness on NaOCl and PAA efficacy against
[...] Read more.
Sodium hypochlorite (NaOCl) and peracetic acid (PAA) are commonly used disinfectants with a maximum recommended concentration of 200 ppm for food-contact surfaces. The objectives of this study were to assess the effect of pH and water hardness on NaOCl and PAA efficacy against SARS-CoV-2 on stainless steel (SS). The two disinfectants were prepared at 200 ppm in water of hardness 150 or 300 ppm with the final pH adjusted to 5, 6, 7, or 8. Disinfectants were applied to virus-contaminated SS for one minute at room temperature following the ASTM E2197 standard assay. SARS-CoV-2 infectivity was quantified using TCID50 assay on Vero-E6 cells. In general, increasingly hard water decreased the efficacy of NaOCl while increasing the efficacy of PAA. Hard water at 300 ppm significantly increased virus log reduction with PAA at pH 8 by ~1.5 log. The maximum virus log reductions were observed at pH 5 for both NaOCl (~1.2 log) and PAA (~2 log) at 150 and 300 ppm hard water, respectively. In conclusion, PAA performed significantly better than NaOCl with harder water. However, both disinfectants at 200 ppm and one minute were not effective (≤3 log) against SARS-CoV-2 on contaminated food-contact surfaces, which may facilitate the role of these surfaces in virus transmission.
Full article
(This article belongs to the Section Food Microbiology)
►▼
Show Figures

Figure 1
Open AccessArticle
A Colorimetric Sensor Enabled with Heterogeneous Nanozymes with Phosphatase-like Activity for the Residue Analysis of Methyl Parathion
Foods 2023, 12(15), 2980; https://doi.org/10.3390/foods12152980 - 07 Aug 2023
Abstract
In this study, a colorimetric sensor was developed for the detection of organophosphorus pesticides (OPs) using a heterogeneous nanozyme with phosphatase-like activity. Herein, this heterogeneous nanozyme (Au-pCeO2) was obtained by the modification of gold nanoparticles on porous cerium oxide nanorods, resulting
[...] Read more.
In this study, a colorimetric sensor was developed for the detection of organophosphorus pesticides (OPs) using a heterogeneous nanozyme with phosphatase-like activity. Herein, this heterogeneous nanozyme (Au-pCeO2) was obtained by the modification of gold nanoparticles on porous cerium oxide nanorods, resulting in synergistic hydrolysis performance for OPs. Taking methyl parathion (MP) as the target pesticide, the catalytic performance and mechanism of Au-pCeO2 were investigated. Based on the phosphatase-like Au-pCeO2, a dual-mode colorimetric sensor for MP was put forward by the analysis of the hydrolysis product via a UV-visible spectrophotometer and a smartphone. Under optimum conditions, this dual-mode strategy can be used for the on-site analysis of MP with concentrations of 5 to 200 μM. Additionally, it can be applied for MP detection in pear and lettuce samples with recoveries ranging from 85.27% to 115.87% and relative standard deviations (RSDs) not exceeding 6.20%, which can provide a simple and convenient method for OP detection in agricultural products.
Full article
(This article belongs to the Special Issue Food Contaminant Detection, Analysis and Risk Assessment)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Melatonin Postharvest Treatment in Leafy ‘Fino’ Lemon Maintains Quality and Bioactive Compounds
by
, , , , and
Foods 2023, 12(15), 2979; https://doi.org/10.3390/foods12152979 - 07 Aug 2023
Abstract
Spain is a great producer of organic lemon; however, it is necessary to reduce the losses caused by post-harvest diseases. Melatonin (MEL) is a naturally occurring compound with physiological functions in fruit growth and ripening and is able to modulate postharvest ripening and
[...] Read more.
Spain is a great producer of organic lemon; however, it is necessary to reduce the losses caused by post-harvest diseases. Melatonin (MEL) is a naturally occurring compound with physiological functions in fruit growth and ripening and is able to modulate postharvest ripening and senescence, most of it being concentrated in climacteric fruit. Thus, the aim of this study was to apply MEL to organic lemon fruit with stems and leaves (LEAF) and to organic lemon without those components (LEAFLESS) after harvesting and storage during 21 days at 2 °C to understand the effects of this treatment on the fruit quality. For this purpose, two experiments were carried out. First, MEL was applied at 0.01 mM, 0.1 mM and 1.0 mM by immersion for 15 min on lemon fruits, and the quality parameters and bioactive compounds of the fruit were analysed. Subsequently, a second experiment was carried out where the best concentration (1 mM) was selected and another time (15 and 30 min) was added, with the same quality parameters being analysed. As a result, we observed that all MEL treatments showed positive effects on weight loss reduction, softening (higher fruit firmness), total acidity and lower colour changes. Total phenols increased in MEL-treated lemons, both in peel and juice. For the three concentrations tested, the best efficiency was obtained with MEL at 1.0 mM, while LEAF lemons were the most effective. In conclusion, lemons containing stems and leaves (LEAF) improved preservability by using MEL at 1.0 mM with better organoleptic quality and enhanced phenolic compounds.
Full article
(This article belongs to the Special Issue Eco-Friendly Postharvest Technologies to Preserve or Enhance Quality and Safety of Fruit and Vegetable Products)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Hydroxypropyl Methylcellulose and Gum Arabic Composite Edible Coatings Amended with Geraniol to Control Postharvest Brown Rot and Maintain Quality of Cold-Stored Plums
by
, , , , , and
Foods 2023, 12(15), 2978; https://doi.org/10.3390/foods12152978 - 07 Aug 2023
Abstract
In this study, the effect of hydroxypropyl methylcellulose (HPMC) and gum Arabic (GA) edible coatings amended with 0.2% geraniol (GE) were evaluated for the control of brown rot, caused by Monilinia fructicola, on artificially inoculated plums (Prunus salicina Lindl., cv. Angeleno)
[...] Read more.
In this study, the effect of hydroxypropyl methylcellulose (HPMC) and gum Arabic (GA) edible coatings amended with 0.2% geraniol (GE) were evaluated for the control of brown rot, caused by Monilinia fructicola, on artificially inoculated plums (Prunus salicina Lindl., cv. Angeleno) stored for 5 weeks at 1 °C. Brown rot is the most important pre- and postharvest fungal disease of stone fruits, causing severe economic losses worldwide. Geraniol is an important constituent of many essential oils that can be obtained as a byproduct from different industrial procedures, such as those of the juice industry. Fruit postharvest quality was also evaluated after 5 and 8 weeks of storage at 1 °C, followed by 3 days at 7 °C plus 5 days at 20 °C, simulating packinghouse, transport, and retail shelf-life conditions, respectively. HPMC coatings containing 0.2% GE reduced the incidence and severity of brown rot by 37.5 and 64.8%, respectively, compared to uncoated fruit after 5 weeks of storage at 1 °C. HPMC-coated plums, with and without GE, showed the highest level of firmness, the lowest change in external peel color parameters (L*, a*, b*, C*, hue), and the lowest flesh bleeding compared to uncoated control and GA-coated samples throughout the entire storage period, which correlated with a higher gas barrier of these coatings without negatively affecting sensory quality. Furthermore, the HPMC-0.2% GE coating provided the highest gloss to coated plums, showing the potential of this coating as a safe and environmentally friendly alternative to conventional fungicides and waxes for brown rot control and quality maintenance of cold-stored plums.
Full article
(This article belongs to the Topic Edible Films and Coatings Based on Functionalized Molecules Extracted from Food Industry By-Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Functional, Physical, and Volatile Characterization of Chitosan/Starch Food Films Functionalized with Mango Leaf Extract
Foods 2023, 12(15), 2977; https://doi.org/10.3390/foods12152977 - 07 Aug 2023
Abstract
Active packaging is one of the currently thriving methods to preserve highly perishable foods. Nonetheless, the integration of active substances into the formulation of the packaging may alter their properties—particularly mass transfer properties—and therefore, the active compounds acting. Different formulations of chitosan (CH),
[...] Read more.
Active packaging is one of the currently thriving methods to preserve highly perishable foods. Nonetheless, the integration of active substances into the formulation of the packaging may alter their properties—particularly mass transfer properties—and therefore, the active compounds acting. Different formulations of chitosan (CH), starch (ST), and their blends (CH-ST), with the addition of mango leaf extract (MLE) have been polymerized by casting to evaluate their food preservation efficiency. A CH-ST blend with 3% MLE using 7.5 mL of the filmogenic solution proved to be the most effective formulation because of its high bioactivity (ca. 80% and 74% of inhibition growth of S. aureus and E. coli, respectively, and 40% antioxidant capacity). The formulation reduced the water solubility and water vapor permeability while increasing UV protection, properties that provide a better preservation of raspberry fruit after 13 days than the control. Moreover, a novel method of Headspace-Gas Chromatography-Ion Mobility Spectrometry to analyze the volatile profiles of the films is employed, to study the potential modification of the food in contact with the active film. These migrated compounds were shown to be closely related to both the mango extract additions and the film’s formulation themselves, showing different fingerprints depending on the film.
Full article
(This article belongs to the Special Issue Biodegradable Materials for Food Preservation and Packaging)
►▼
Show Figures

Figure 1
Open AccessReview
Recent Advance of Intelligent Packaging Aided by Artificial Intelligence for Monitoring Food Freshness
Foods 2023, 12(15), 2976; https://doi.org/10.3390/foods12152976 - 07 Aug 2023
Abstract
Food safety is a pressing concern for human society, as it directly impacts people’s lives, while food freshness serves as one of the most crucial indicators in ensuring food safety. There exist diverse techniques for monitoring food freshness, among which intelligent packaging based
[...] Read more.
Food safety is a pressing concern for human society, as it directly impacts people’s lives, while food freshness serves as one of the most crucial indicators in ensuring food safety. There exist diverse techniques for monitoring food freshness, among which intelligent packaging based on artificial intelligence technology boasts the advantages of low cost, high efficiency, fast speed and wide applicability; however, it is currently underutilized. By analyzing the current research status of intelligent packaging both domestically and internationally, this paper provides a clear classification of intelligent packaging technology. Additionally, it outlines the advantages and disadvantages of using intelligent packaging technology for food freshness detection methods, while summarizing the latest research progress in applying artificial intelligence-based technologies to food freshness detection through intelligent packaging. Finally, the author points out the limitations of the current research, and anticipates future developments in artificial intelligence technology for assisting freshness detection in intelligent packaging. This will provide valuable insights for the future development of intelligent packaging in the field of food freshness detection.
Full article
(This article belongs to the Special Issue Trends and Prospects in Sustainable Food Packaging Materials)
►▼
Show Figures

Graphical abstract
Open AccessReview
Recent Advances in the Preparation, Structure, and Biological Activities of β-Glucan from Ganoderma Species: A Review
Foods 2023, 12(15), 2975; https://doi.org/10.3390/foods12152975 - 07 Aug 2023
Abstract
Ganoderma has served as a valuable food supplement and medicinal ingredient with outstanding active compounds that are essential for human protection against chronic diseases. Modern pharmacology studies have proven that Ganoderma β-d-glucan exhibits versatile biological activities, such as immunomodulatory, antitumor, antioxidant,
[...] Read more.
Ganoderma has served as a valuable food supplement and medicinal ingredient with outstanding active compounds that are essential for human protection against chronic diseases. Modern pharmacology studies have proven that Ganoderma β-d-glucan exhibits versatile biological activities, such as immunomodulatory, antitumor, antioxidant, and antiviral properties, as well as gut microbiota regulation. As a promising polysaccharide, β-d-glucan is widely used in the prevention and treatment of various diseases. In recent years, the extraction, purification, structural characterization, and pharmacological activities of polysaccharides from the fruiting bodies, mycelia, spores, and fermentation broth of Ganoderma species have received wide attention from scholars globally. Unfortunately, comprehensive studies on the preparation, structure and bioactivity, toxicology, and utilization of β-d-glucans from Ganoderma species still need to be further explored, which may result in limitations in future sustainable industrial applications of β-d-glucans. Thus, this review summarizes the research progress in recent years on the physicochemical properties, structural characteristics, and bioactivity mechanisms of Ganoderma β-d-glucan, as well as its toxicological assessment and applications. This review is intended to provide a theoretical basis and reference for the development and application of β-d-glucan in the fields of pharmaceuticals, functional foods, and cosmetics.
Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Foods Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agriculture, Energies, Foods, Sustainability
New Insights in Agriculture: Sustainability, Digitalization and Food Safety
Topic Editors: Kristina Kljak, Klaudija Carović-Stanko, Darija Lemić, Jernej Jakše, Kurt A. Rosentrater, Arup Kumar Goswami, Craig SturrockDeadline: 15 September 2023
Topic in
Applied Sciences, AppliedChem, Foods, MPs, Molecules
Future Food Analysis and Detection - 2nd Volume
Topic Editors: Alessandra Biancolillo, Federico MariniDeadline: 30 September 2023
Topic in
Agriculture, Beverages, Foods, Microorganisms, Toxins
Emerging Food Safety Issues Associated with Mycotoxins
Topic Editors: Wayne L. Bryden, Naresh MaganDeadline: 1 December 2023
Topic in
Foods, Forests, IJERPH, Sustainability, Urban Science
Nature Therapy: The Physiological Effects of Nature on Humans
Topic Editors: Harumi Ikei, Hyunju Jo, Yoshifumi MiyazakiDeadline: 25 December 2023

Conferences
27 October–10 November 2023
The 4th International Electronic Conference on Applied Sciences (ASEC2023)

Special Issues
Special Issue in
Foods
Dietary Bioactive Compound and Health – Volume II
Guest Editors: Choon Young Kim, Bonggi LeeDeadline: 10 August 2023
Special Issue in
Foods
The Chemistry of Wine—from Vine to the Glass
Guest Editors: José Sousa Câmara, José António Couto Teixeira, Rosa M. PerestreloDeadline: 25 August 2023
Special Issue in
Foods
Intervention Processing for Controlling Pathogenic Bacteria in Fresh and Processed Meat
Guest Editors: Vasco Cadavez, Ursula Gonzales-BarronDeadline: 31 August 2023
Special Issue in
Foods
Rethinking Agri-Food and Marine Waste and Byproducts for Circular and Sustainable Bio-Based Food Packaging
Guest Editors: Sílvia Petronilho, Mario M. MartinezDeadline: 20 September 2023
Topical Collections
Topical Collection in
Foods
Edible Films and Coatings for Food Preservation
Collection Editor: Hiléia Karla Silva Souza
Topical Collection in
Foods
Dietary Fiber and Polysaccharide: Preparation, Structure and Health Benefits
Collection Editor: Qiang Yu
Topical Collection in
Foods
Bioactive Molecules and Health-Promoting Properties in Traditional and Innovative Food and Beverage
Collection Editor: Dario Donno
Topical Collection in
Foods
Phytonutrients in Food: From Traditional to Rational Usage
Collection Editor: Quanhong Li