Journal Description
Micromachines
Micromachines
is a peer-reviewed, open access journal on the science and technology of small structures, devices and systems, published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Ei Compendex, dblp, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Analytical) / CiteScore - Q2 (Mechanical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.2 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about Micromachines.
Impact Factor:
3.4 (2022);
5-Year Impact Factor:
3.3 (2022)
Latest Articles
Editorial for the Special Issue on Physics in Micro/Nano Devices: From Fundamental to Application
Micromachines 2023, 14(8), 1571; https://doi.org/10.3390/mi14081571 - 08 Aug 2023
Abstract
With the continuous miniaturization of micro/nano devices, it is of great importance to study the physics of these devices, both for fundamental and practical research [...]
Full article
(This article belongs to the Special Issue Physics in Micro/Nano Devices: From Fundamental to Application)
Open AccessArticle
Continuous Flow Separation of Live and Dead Cells Using Gravity Sedimentation
Micromachines 2023, 14(8), 1570; https://doi.org/10.3390/mi14081570 - 08 Aug 2023
Abstract
►▼
Show Figures
The separation of target cell species is an important step for various biomedical applications ranging from single cell studies to drug testing and cell-based therapies. The purity of cell solutions is critical for therapeutic application. For example, dead cells and debris can negatively
[...] Read more.
The separation of target cell species is an important step for various biomedical applications ranging from single cell studies to drug testing and cell-based therapies. The purity of cell solutions is critical for therapeutic application. For example, dead cells and debris can negatively affect the efficacy of cell-based therapies. This study presents a cost-effective method for the continuous separation of live and dead cells using a 3D resin-printed microfluidic device. Saccharomyces cerevisiae yeast cells are used for cell separation experiments. Both numerical and experimental studies are presented to show the effectiveness of the presented device for the isolation of dead cells from cell solutions. The experimental results show that the 3D-printed microfluidic device successfully separates live and dead cells based on density differences. Separation efficiencies of over 95% are achieved at optimum flow rates, resulting in purer cell populations in the outlets. This study highlights the simplicity, cost-effectiveness, and potential applications of the 3D-printed microfluidic device for cell separation. The implementation of 3D printing technology in microfluidics holds promise for advancing the field and enabling the production of customized devices for biomedical applications.
Full article

Figure 1
Open AccessArticle
An 8–18 GHz 90° Switched T-Type Phase Shifter
Micromachines 2023, 14(8), 1569; https://doi.org/10.3390/mi14081569 - 07 Aug 2023
Abstract
This paper proposes a novel 8–18 GHz 90° switched T-type phase shifter (TPS). In contrast to the conventional TPS, the proposed TPS adds a compensation capacitance to greatly enhance the phase shifting capacity. Moreover, the designed structure also integrates a filtering compensation network,
[...] Read more.
This paper proposes a novel 8–18 GHz 90° switched T-type phase shifter (TPS). In contrast to the conventional TPS, the proposed TPS adds a compensation capacitance to greatly enhance the phase shifting capacity. Moreover, the designed structure also integrates a filtering compensation network, which can effectively achieve a flat relative phase shift in a wide band. The proposed 90° TPS is fabricated using 0.15 μm GaAs pHEMT technology. The TPS achieves homogeneous phase shift at 8–18 GHz, with the measured phase error of less than ±1.5°. The insertion loss of the proposed phase shifter is 1.3–2.6 dB, and the chip size is merely 0.53 × 0.86 mm2. Thanks to these excellent performance characteristics, the designed phase shifter is well-suited for ultra-wideband wireless communication and radar systems.
Full article
(This article belongs to the Special Issue Recent Advances in Microwave Components and Devices)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural Design and Simulation of a Multi-Channel and Dual Working Condition Wafer Defect Inspection Prototype
Micromachines 2023, 14(8), 1568; https://doi.org/10.3390/mi14081568 - 07 Aug 2023
Abstract
Detecting and classifying defects on unpatterned wafers is a key part of wafer front-end inspection. Defect inspection schemes vary depending on the type and location of the defects. In this paper, the structure of the prototype is designed to meet the requirements of
[...] Read more.
Detecting and classifying defects on unpatterned wafers is a key part of wafer front-end inspection. Defect inspection schemes vary depending on the type and location of the defects. In this paper, the structure of the prototype is designed to meet the requirements of wafer surface and edge defect inspection. This prototype has four inspection channels: scattering, reflection, phase, and contour, with two working conditions: surface and edge inspection. The key structure of the prototype was simulated using Ansys. The simulation results show that the maximum deformation of the optical detection subsystem is 19.5 μm and the fundamental frequency of the prototype is 96.9 Hz; thus, these results meet the requirements of optical performance stability and structural design. The experimental results show that the prototype meets the requirements of the inspection sensitivity better than 200 nm equivalent PSL spherical defects.
Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Cr2S3-Cr2O3/Poly-2-aminobenzene-1-thiol as a Highly Photocatalytic Material for Green Hydrogen Generation from Sewage Water
Micromachines 2023, 14(8), 1567; https://doi.org/10.3390/mi14081567 - 07 Aug 2023
Abstract
This study highlights the utilization of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode for efficient and highly sensitive photon absorption, enabling the generation of green hydrogen through the production of hot electrons upon illumination. The nanocomposite is synthesized
[...] Read more.
This study highlights the utilization of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode for efficient and highly sensitive photon absorption, enabling the generation of green hydrogen through the production of hot electrons upon illumination. The nanocomposite is synthesized via a one-pot reaction using K2Cr2O7 and 2-aminobenzene-1-thiol monomer, and the presence of Cr2S3-Cr2O3 is confirmed by XRD and XPS analysis within the composite. The optical properties of the Cr2S3-Cr2O3/poly-2-aminobenzene-1-thiol composite exhibit wide spectral coverage from UV to IR, with a bandgap of 1.6 eV. The diverse morphological behavior observed in the composite correlates with its optical properties, with the cleft spherical particles of the pure polymer transforming into rod-like structures embedded within the polymer matrix. The generated hydrogen gas demonstrates an impressive efficiency of 40.5 mole/10.cm2.h through electrochemical testing. The current density (Jph) values are evaluated under different light frequencies using optical filters ranging from 730 to 340 nm, resulting in Jph values of 0.012 and 0.014 mA.cm−2, respectively. These findings present a promising avenue as green hydrogen for industrial applications, leveraging the potential of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode.
Full article
(This article belongs to the Special Issue Sustainable Materials for Energy and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Simulation Methods for MEMS S&A Devices for 2D Fuze Overload Loading
Micromachines 2023, 14(8), 1566; https://doi.org/10.3390/mi14081566 - 07 Aug 2023
Abstract
An experimental testing system for the two-dimensional (2D) fuze overload loading process was designed to address the loading issues of recoil overload and centrifugal overload in fuze safety and arming (S&A) device. By incorporating centrifuge rotation energy storage, impact acceleration simulation, and equivalent
[...] Read more.
An experimental testing system for the two-dimensional (2D) fuze overload loading process was designed to address the loading issues of recoil overload and centrifugal overload in fuze safety and arming (S&A) device. By incorporating centrifuge rotation energy storage, impact acceleration simulation, and equivalent centrifugal rotation simulation, a block equipped with a fuze S&A device accelerated instantly upon having impact from a centrifuge-driven impact hammer, simulating recoil overload loading. The impact hammer was retracted instantaneously by adopting an electromagnetic brake, which resulted in the centrifugal rotation of the block around its track, to simulate the centrifugal overload loading. The dynamic equations of the experimental testing system and the equations of impact hammer motions were established, whereby the rotation speed of the centrifuge and the braking force of the electromagnetic brake were calculated and selected. A dynamic model of the collision between the impact hammer and block was established using ANSYS/LS-DYNA software for simulation analysis. The acceleration curves of the recoil overload and centrifugal overload with variations in the centrifuge speed, cushion material, and buffer thickness were obtained, which verified the feasibility of the proposed loading simulation method. Two-dimensional overload loading simulation tests were performed using the developed experimental testing system, and the acceleration curves of the recoil overload and centrifugal overload were measured. The test results indicated that the proposed system can accomplish 2D overload loading simulations for a recoil overload of several 10,000× g and centrifugal overload of several 1000× g.
Full article
(This article belongs to the Special Issue Recent Advances in N/MEMS Nonlinear Dynamics)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection
Micromachines 2023, 14(8), 1565; https://doi.org/10.3390/mi14081565 - 06 Aug 2023
Abstract
The problem that the fuze overload signal sticks and is not easily identified by the counting layer during the high-speed intrusion of the projectile is an important factor affecting the explosion of the projectile in the specified layer. A three-pole plate dual-capacitance acceleration
[...] Read more.
The problem that the fuze overload signal sticks and is not easily identified by the counting layer during the high-speed intrusion of the projectile is an important factor affecting the explosion of the projectile in the specified layer. A three-pole plate dual-capacitance acceleration sensor based on the capacitive sensor principle is constructed in this paper. The modal simulation of the sensor structure is carried out using COMSOL 6.1 simulation software, the structural parameters of the sensor are derived from the mechanical properties of the model, and finally the physical sensor is processed and fabricated using the derived structural parameters. The mechanical impact characteristics of the model under different overloads were investigated using ANSYS/LS-DYNA, and the numerical simulation of the projectile intrusion into the three-layer concrete slab was carried out using LS-DYNA. Under different overload conditions, the sensor was tested using the Machette’s hammer test and the output signal of the sensor was obtained. The output signal was analyzed. Finally, a sensor with self-powered output, high output voltage amplitude, and low spurious interference was obtained. The results show that the ceramic capacitive sensor has a reasonable structure, can reliably receive vibration signals, and has certain engineering applications in the intrusion meter layer.
Full article
(This article belongs to the Special Issue MEMS Inertial Device)
►▼
Show Figures

Figure 1
Open AccessReview
Laser-Based Manufacturing of Ceramics: A Review
Micromachines 2023, 14(8), 1564; https://doi.org/10.3390/mi14081564 - 06 Aug 2023
Abstract
Ceramics are widely used in microelectronics, semiconductor manufacturing, medical devices, aerospace, and aviation, cutting tools, precision optics, MEMS and NEMS devices, insulating components, and ceramic molds. But the fabrication and machining of the ceramic-based materials by conventional processes are always difficult due to
[...] Read more.
Ceramics are widely used in microelectronics, semiconductor manufacturing, medical devices, aerospace, and aviation, cutting tools, precision optics, MEMS and NEMS devices, insulating components, and ceramic molds. But the fabrication and machining of the ceramic-based materials by conventional processes are always difficult due to their higher hardness and mechanical properties. Therefore, advanced manufacturing techniques are being preferred for these advanced materials, and out of that, laser-based processes are widely used. The benefits of laser fabrication and machining of ceramics include high precision, reduced thermal damage, non-contact processing, and the ability to work with complex geometries. Laser technology continues to advance, enabling even more intricate and diverse applications for ceramics in a wide range of industries. This paper explains various laser based ceramic processing techniques, such as selective laser sintering and melting, and laser machining techniques, such as laser drilling, etc. Identifying and optimizing the process parameters that influence the output quality of laser processed parts is the key technique to improving the quality, which is also focused on in this paper. It aims to facilitate the researchers by providing knowledge on laser-based manufacturing of ceramics and their composites to establish the field further.
Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication)
►▼
Show Figures

Figure 1
Open AccessArticle
Low-Temperature Adaptive Dual-Network MXene Nanocomposite Hydrogel as Flexible Wearable Strain Sensors
Micromachines 2023, 14(8), 1563; https://doi.org/10.3390/mi14081563 - 06 Aug 2023
Abstract
Flexible electronic devices and conductive materials can be used as wearable sensors to detect human motions. However, the existing hydrogels generally have problems of weak tensile capacity, insufficient durability, and being easy to freeze at low temperatures, which greatly affect their application in
[...] Read more.
Flexible electronic devices and conductive materials can be used as wearable sensors to detect human motions. However, the existing hydrogels generally have problems of weak tensile capacity, insufficient durability, and being easy to freeze at low temperatures, which greatly affect their application in the field of wearable devices. In this paper, glycerol was partially replaced by water as the solvent, agar was thermally dissolved to initiate acrylamide polymerization, and MXene was used as a conductive filler and initiator promoter to form the double network MXene-PAM/Agar organic hydrogel. The presence of MXene makes the hydrogel produce more conductive paths and enforces the hydrogel’s higher conductivity (1.02 S·m−1). The mechanical properties of hydrogels were enhanced by the double network structure, and the hydrogel had high stretchability (1300%). In addition, the hydrogel-based wearable strain sensor exhibited good sensitivity over a wide strain range (GF = 2.99, 0–200% strain). The strain sensor based on MXene-PAM/Agar hydrogel was capable of real-time monitoring of human movement signals such as fingers, wrists, arms, etc. and could maintain good working conditions even in cold environments (−26 °C). Hence, we are of the opinion that delving into this hydrogel holds the potential to broaden the scope of utilizing conductive hydrogels as flexible and wearable strain sensors, especially in chilly environments.
Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, and Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
A Comprehensive Study of CsSnI3-Based Perovskite Solar Cells with Different Hole Transporting Layers and Back Contacts
Micromachines 2023, 14(8), 1562; https://doi.org/10.3390/mi14081562 - 06 Aug 2023
Abstract
By an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the instability and toxicity of lead were raised as major hurdles in the path toward their commercialization. The usage of an inorganic
[...] Read more.
By an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the instability and toxicity of lead were raised as major hurdles in the path toward their commercialization. The usage of an inorganic lead-free CsSnI3-based halide perovskite offers the advantages of enhancing the stability and degradation resistance of devices, reducing the cost of devices, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) with Spiro-OMeTAD hole transporting layer (HTL) at perovskite thickness of 330 nm is in good agreement with the previous experimental result (12.96%). By changing the perovskite thickness and work operating temperature, the maximum efficiency of 18.15% is calculated for standard devices at a perovskite thickness of 800 nm. Then, the effects of replacement of Spiro-OMeTAD with other HTLs including Cu2O, CuI, CuSCN, CuSbS2, Cu2ZnSnSe4, CBTS, CuO, MoS2, MoOx, MoO3, PTAA, P3HT, and PEDOT:PSS on photovoltaic characteristics were calculated. The device with Cu2ZnSnSe4 hole transport in the same condition shows the highest efficiency of 21.63%. The back contact also changed by considering different metals such as Ag, Cu, Fe, C, Au, W, Ni, Pd, Pt, and Se. The outcomes provide valuable insights into the efficiency improvement of CsSnI3-based PSCs by Spiro-OMeTAD substitution with other HTLs, and back-contact modification upon the comprehensive analysis of 120 devices with different configurations.
Full article
(This article belongs to the Special Issue Perovskite Materials and Devices: Past, Present and Future)
►▼
Show Figures

Figure 1
Open AccessArticle
Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting
by
, , , , , , , , and
Micromachines 2023, 14(8), 1561; https://doi.org/10.3390/mi14081561 - 05 Aug 2023
Abstract
Dielectrophoresis technology is applied to microfluidic chips to achieve microscopic control of cells. Currently, microfluidic chips based on dielectrophoresis have certain limitations in terms of cell sorting species, in order to explore a microfluidic chip with excellent performance and high versatility. In this
[...] Read more.
Dielectrophoresis technology is applied to microfluidic chips to achieve microscopic control of cells. Currently, microfluidic chips based on dielectrophoresis have certain limitations in terms of cell sorting species, in order to explore a microfluidic chip with excellent performance and high versatility. In this paper, we designed a microfluidic chip that can be used for continuous cell sorting, with the structural design of a curved channel and curved double side electrodes. CM factors were calculated for eight human healthy blood cells and cancerous cells using the software MyDEP, the simulation of various blood cells sorting and the simulation of the joule heat effect of the microfluidic chip were completed using the software COMSOL Multiphysics. The effect of voltage and inlet flow velocity on the simulation results was discussed using the control variables method. We found feasible parameters from simulation results under different voltages and inlet flow velocities, and the feasibility of the design was verified from multiple perspectives by measuring cell movement trajectories, cell recovery rate and separation purity. This paper provides a universal method for cell, particle and even protein sorting.
Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
The Design of a Dynamic Configurable Packet Parser Based on FPGA
by
and
Micromachines 2023, 14(8), 1560; https://doi.org/10.3390/mi14081560 - 05 Aug 2023
Abstract
To meet the evolving demands of programmable networks and address the limitations of traditional fixed-type protocol parsers, we propose a dynamic and configurable low-latency parser implemented on an FPGA. The architecture consists of three protocol analysis modules and a TCAM-SRAM. Latency is reduced
[...] Read more.
To meet the evolving demands of programmable networks and address the limitations of traditional fixed-type protocol parsers, we propose a dynamic and configurable low-latency parser implemented on an FPGA. The architecture consists of three protocol analysis modules and a TCAM-SRAM. Latency is reduced by optimizing the state machine and parallel extraction matching. At the same time, we introduce the chain mapping idea and container concept to formulate the matching and extraction rules of table entries and enhance the extensibility of the parser. Furthermore, our system supports dynamic configuration through SDN control, allowing flexible adaptation to diverse scenarios. Our design has been verified and simulated with a cocotb-based framework. The resulting architecture is implemented on Xilinx Ultrascale+ FPGAs and supports a throughput of more than 80 Gbps, with a maximum latency of only 36 nanoseconds for L4 protocol parsing.
Full article
(This article belongs to the Special Issue FPGA Applications and Future Trends)
►▼
Show Figures

Figure 1
Open AccessArticle
A Simulation of Thermal Management Using a Diamond Substrate with Nanostructures
by
, , , , , , , , , and
Micromachines 2023, 14(8), 1559; https://doi.org/10.3390/mi14081559 - 05 Aug 2023
Abstract
In recent years, the rapid progress in the field of GaN-based power devices has led to a smaller chip size and increased power usage. However, this has given rise to increasing heat aggregation, which affects the reliability and stability of these devices. To
[...] Read more.
In recent years, the rapid progress in the field of GaN-based power devices has led to a smaller chip size and increased power usage. However, this has given rise to increasing heat aggregation, which affects the reliability and stability of these devices. To address this issue, diamond substrates with nanostructures were designed and investigated in this paper. The simulation results confirmed the enhanced performance of the device with diamond nanostructures, and the fabrication of a diamond substrate with nanostructures is demonstrated herein. The diamond substrate with square nanopillars 2000 nm in height exhibited optimal heat dissipation performance. Nanostructures can effectively decrease heat accumulation, resulting in a reduction in temperature from 121 °C to 114 °C. Overall, the simulation and experimental results in this work may provide guidelines and help in the development of the advanced thermal management of GaN devices using diamond micro/nanostructured substrates.
Full article
(This article belongs to the Special Issue Advances in Diamond-Based Devices and Their Manufacturing)
►▼
Show Figures

Figure 1
Open AccessArticle
Z-Increments Online Supervisory System Based on Machine Vision for Laser Solid Forming
Micromachines 2023, 14(8), 1558; https://doi.org/10.3390/mi14081558 - 04 Aug 2023
Abstract
An improper Z-increment in laser solid forming can result in fluctuations in the off-focus amount during the manufacturing procedure, thereby exerting an influence on the precision and quality of the fabricated component. To solve this problem, this study proposes a closed-loop control system
[...] Read more.
An improper Z-increment in laser solid forming can result in fluctuations in the off-focus amount during the manufacturing procedure, thereby exerting an influence on the precision and quality of the fabricated component. To solve this problem, this study proposes a closed-loop control system for a Z-increment based on machine vision monitoring. Real-time monitoring of the precise cladding height is accomplished by constructing a paraxial monitoring system, utilizing edge detection technology and an inverse perspective transformation model. This system enables the continuous assessment of the cladding height, which serves as a control signal for the regulation of the Z-increments in real-time. This ensures the maintenance of a constant off-focus amount throughout the manufacturing process. The experimental findings indicate that the proposed approach yields a maximum relative error of 1.664% in determining the cladding layer height, thereby enabling accurate detection of this parameter. Moreover, the real-time adjustment of the Z-increment quantities results in reduced standard deviations of individual cladding layer heights, and the height of the cladding layer increases. This proactive adjustment significantly enhances the stability of the manufacturing process and improves the utilization of powder material. This study can, therefore, provide effective guidance for process control and product optimization in laser solid forming.
Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
►▼
Show Figures

Figure 1
Open AccessReview
Silicon Carbide-Based DNA Sensing Technologies
Micromachines 2023, 14(8), 1557; https://doi.org/10.3390/mi14081557 - 04 Aug 2023
Abstract
DNA sensing is critical in various applications such as the early diagnosis of diseases and the investigation of forensic evidence, food processing, agriculture, environmental protection, etc. As a wide-bandgap semiconductor with excellent chemical, physical, electrical, and biocompatible properties, silicon carbide (SiC) is a
[...] Read more.
DNA sensing is critical in various applications such as the early diagnosis of diseases and the investigation of forensic evidence, food processing, agriculture, environmental protection, etc. As a wide-bandgap semiconductor with excellent chemical, physical, electrical, and biocompatible properties, silicon carbide (SiC) is a promising material for DNA sensors. In recent years, a variety of SiC-based DNA-sensing technologies have been reported, such as nanoparticles and quantum dots, nanowires, nanopillars, and nanowire-based field-effect-transistors, etc. This article aims to provide a review of SiC-based DNA sensing technologies, their functions, and testing results.
Full article
(This article belongs to the Special Issue Biosensors in Monitoring and Diagnosis for Medical and Agricultural Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis of the Thermally Induced Packaging Effects on the Frequency Drift of Micro-Electromechanical System Resonant Accelerometer
Micromachines 2023, 14(8), 1556; https://doi.org/10.3390/mi14081556 - 03 Aug 2023
Abstract
Due to the working principle of MEMS resonant accelerometers, their thermally induced frequency drift is an inevitable practical issue for their extensive application. This paper is focused on reducing the thermally induced packaging effects on the frequency drift. A leadless ceramic chip carrier
[...] Read more.
Due to the working principle of MEMS resonant accelerometers, their thermally induced frequency drift is an inevitable practical issue for their extensive application. This paper is focused on reducing the thermally induced packaging effects on the frequency drift. A leadless ceramic chip carrier package with a stress-buffering layer was proposed for a MEMS resonant accelerometer, and the influences of packaging structure parameters on the frequency drift were investigated through finite element simulations and verified experimentally. Because of the thermal mismatch between dissimilar materials, the thermo-mechanical stress within the resonant beam leads to a change in the effective stiffness and causes the frequency drift to decrease linearly with increasing temperature. Furthermore, our investigations reveal that increasing the stress-buffering layer thickness and reducing the solder layer thickness can significantly minimize the thermo-mechanical stress within the resonant beam. As the neutral plane approaches the horizontal symmetry plane of the resonant beam when optimizing the packaging structure, the effects of the compressive and tensile stresses on the effective stiffness of the resonant beam will cancel each other out, which can dramatically reduce the frequency drift. These findings provide guidelines for packaging design through which to improve the temperature stability of MEMS resonant accelerometers.
Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
A High-Precision Multi-Beam Optical Measurement Method for Cylindrical Surface Profile
by
, , , , , , and
Micromachines 2023, 14(8), 1555; https://doi.org/10.3390/mi14081555 - 03 Aug 2023
Abstract
To automatically measure the surface profile of a cylindrical workpiece, a high-precision multi-beam optical method is proposed in this paper. First, some successive images for the cylindrical workpiece’s surface are acquired by a multi-beam angle sensor under different light directions. Then, the light
[...] Read more.
To automatically measure the surface profile of a cylindrical workpiece, a high-precision multi-beam optical method is proposed in this paper. First, some successive images for the cylindrical workpiece’s surface are acquired by a multi-beam angle sensor under different light directions. Then, the light directions are estimated based on the feature regions in the images to calculate surface normal vectors. Finally, according to the relationship of the surface normal vector and the vertical section of the workpiece’s surface, a depth map is reconstructed to achieve the curvature surface, which can be employed to measure the curvature radius of the cylindrical workpiece’s surface. Experimental results indicate that the proposed measurement method can achieve good measurement precision with a mean error of the curvature radius of a workpiece’s surface of 0.89% at a reasonable speed of 10.226 s, which is superior to some existing methods.
Full article
(This article belongs to the Special Issue Advances in Sensors, Algorithms and Machines for Intelligent Micro- and Nano-Systems)
►▼
Show Figures

Figure 1
Open AccessReview
Single-Line Multi-Channel Flexible Stress Sensor Arrays
Micromachines 2023, 14(8), 1554; https://doi.org/10.3390/mi14081554 - 03 Aug 2023
Abstract
Flexible stress sensor arrays, comprising multiple flexible stress sensor units, enable accurate quantification and analysis of spatial stress distribution. Nevertheless, the current implementation of flexible stress sensor arrays faces the challenge of excessive signal wires, resulting in reduced deformability, stability, reliability, and increased
[...] Read more.
Flexible stress sensor arrays, comprising multiple flexible stress sensor units, enable accurate quantification and analysis of spatial stress distribution. Nevertheless, the current implementation of flexible stress sensor arrays faces the challenge of excessive signal wires, resulting in reduced deformability, stability, reliability, and increased costs. The primary obstacle lies in the electric amplitude modulation nature of the sensor unit’s signal (e.g., resistance and capacitance), allowing only one signal per wire. To overcome this challenge, the single-line multi-channel signal (SLMC) measurement has been developed, enabling simultaneous detection of multiple sensor signals through one or two signal wires, which effectively reduces the number of signal wires, thereby enhancing stability, deformability, and reliability. This review offers a general knowledge of SLMC measurement beginning with flexible stress sensors and their piezoresistive, capacitive, piezoelectric, and triboelectric sensing mechanisms. A further discussion is given on different arraying methods and their corresponding advantages and disadvantages. Finally, this review categorizes existing SLMC measurement methods into RLC series resonant sensing, transmission line sensing, ionic conductor sensing, triboelectric sensing, piezoresistive sensing, and distributed fiber optic sensing based on their mechanisms, describes the mechanisms and characteristics of each method and summarizes the research status of SLMC measurement.
Full article
(This article belongs to the Special Issue Bioelectronics & Wearable Devices: Sensing, Signal Processing and Powering)
►▼
Show Figures

Figure 1
Open AccessArticle
Haptic Feedback Device Using 3D-Printed Flexible, Multilayered Piezoelectric Coating for In-Car Touchscreen Interface
by
, , , , , , and
Micromachines 2023, 14(8), 1553; https://doi.org/10.3390/mi14081553 - 02 Aug 2023
Abstract
This study focuses on the development of a piezoelectric device capable of generating feedback vibrations to the user who manipulates it. The objective here is to explore the possibility of developing a haptic system that can replace physical buttons on the tactile screen
[...] Read more.
This study focuses on the development of a piezoelectric device capable of generating feedback vibrations to the user who manipulates it. The objective here is to explore the possibility of developing a haptic system that can replace physical buttons on the tactile screen of in-car systems. The interaction between the user and the developed device allows completing the feedback loop, where the user’s action generates an input signal that is translated and outputted by the device, and then detected and interpreted by the user’s haptic sensors and brain. An FEM (finite element model) via ANSYS multiphysics software was implemented to optimize the haptic performance of the wafer structure consisting of a BaTiO3 multilayered piezocomposite coated on a PET transparent flexible substrate. Several parameters relating to the geometric and mechanical properties of the wafer, together with those of the electrodes, are demonstrated to have significant impact on the actuation ability of the haptic device. To achieve the desired vibration effect on the human skin, the haptic system must be able to drive displacement beyond the detection threshold (~2 µm) at a frequency range of 100–700 Hz. The most optimized actuation ability is obtained when the ratio of the dimension (radius and thickness) between the piezoelectric coating and the substrate layer is equal to ~0.6. Regarding the simulation results, it is revealed that the presence of the conductive electrodes provokes a decrease in the displacement by approximately 25–30%, as the wafer structure becomes stiffer. To ensure the minimum displacement generated by the haptic device above 2 µm, the piezoelectric coating is screen-printed by two stacked layers, electrically connected in parallel. This architecture is expected to boost the displacement amplitude under the same electric field (denoted ) subjected to the single-layered coating. Accordingly, multilayered design seems to be a good alternative to enhance the haptic performance while keeping moderate values of so as to prevent any undesired electrical breakdown of the coating. Practical characterizations confirmed that is sufficient to generate feedback vibrations (under a maximum input load of 5 N) perceived by the fingertip. This result confirms the reliability of the proposed haptic device, despite discrepancies between the predicted theory and the real measurements. Lastly, a demonstrator comprising piezoelectric buttons together with electronic command and conditioning circuits are successfully developed, offering an efficient way to create multiple sensations for the user. On the basis of empirical data acquired from several trials conducted on 20 subjects, statistical analyses together with relevant numerical indicators were implemented to better assess the performance of the developed haptic device.
Full article
(This article belongs to the Special Issue Recent Advances in Soft Robotics and Flexible Electronics: From Materials to Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
An Adaptive Infrared Small-Target-Detection Fusion Algorithm Based on Multiscale Local Gradient Contrast for Remote Sensing
Micromachines 2023, 14(8), 1552; https://doi.org/10.3390/mi14081552 - 02 Aug 2023
Abstract
►▼
Show Figures
Space vehicles such as missiles and aircraft have relatively long tracking distances. Infrared (IR) detectors are used for small target detection. The target presents point target characteristics, which lack contour, shape, and texture information. The high-brightness cloud edge and high noise have an
[...] Read more.
Space vehicles such as missiles and aircraft have relatively long tracking distances. Infrared (IR) detectors are used for small target detection. The target presents point target characteristics, which lack contour, shape, and texture information. The high-brightness cloud edge and high noise have an impact on the detection of small targets because of the complex background of the sky and ground environment. Traditional template-based filtering and local contrast-based methods do not distinguish between different complex background environments, and their strategy is to unify small-target template detection or to use absolute contrast differences; so, it is easy to have a high false alarm rate. It is necessary to study the detection and tracking methods in complex backgrounds and low signal-to-clutter ratios (SCRs). We use the complexity difference as a prior condition for detection in the background of thick clouds and ground highlight buildings. Then, we use the spatial domain filtering and improved local contrast joint algorithm to obtain a significant area. We also provide a new definition of gradient uniformity through the improvement of the local gradient method, which could further enhance the target contrast. It is important to distinguish between small targets, highlighted background edges, and noise. Furthermore, the method can be used for parallel computing. Compared with the traditional space filtering algorithm or local contrast algorithm, the flexible fusion strategy can achieve the rapid detection of small targets with a higher signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF).
Full article

Figure 1

Journal Menu
► ▼ Journal Menu-
- Micromachines Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Machines, Micromachines, Remote Sensing, Sustainability, Symmetry, Wind
Energy Equipment and Condition Monitoring
Topic Editors: Zhifeng Xiao, Bin Huang, Lida LiaoDeadline: 15 September 2023
Topic in
Materials, Applied Sciences, Sensors, Micromachines, Actuators
Piezoelectric Materials and Applications
Topic Editors: Mickaël Lallart, Hélène Debeda, Jörg Wallaschek, Guylaine Poulin-VittrantDeadline: 30 September 2023
Topic in
Applied Biosciences, Bioengineering, Biomolecules, JCDD, JCM, Micromachines, Reports
Usefulness and Clinical Applications of 3D Printing in Cardiovascular Diseases 2.0
Topic Editors: Zhonghua Sun, Massimo Chessa, Israel Valverde, Alexander Van De BruaeneDeadline: 31 October 2023
Topic in
Applied Sciences, Energies, Materials, Micromachines, Sensors
Advanced Energy Harvesting Technology
Topic Editors: Mengying Xie, KC Aw, Junlei Wang, Hailing Fu, Wee Chee GanDeadline: 31 December 2023

Conferences
Special Issues
Special Issue in
Micromachines
NANO KOREA 2023
Guest Editors: Changhwan Choi, Dukhyun Choi, Junhong Min, Won Seok ChangDeadline: 11 August 2023
Special Issue in
Micromachines
Development of High Performance Thermoelectric Materials towards Applications
Guest Editor: Subhajit RoychowdhuryDeadline: 25 August 2023
Special Issue in
Micromachines
Micro- and Nano-Systems for Manipulation, Actuation and Sensing
Guest Editors: Ran Peng, Shuailong ZhangDeadline: 31 August 2023
Special Issue in
Micromachines
Heat and Light at the Nanoscale: Fundamentals and Applications
Guest Editor: Linxiao ZhuDeadline: 15 September 2023
Topical Collections
Topical Collection in
Micromachines
Micromixers: Analysis, Design and Fabrication
Collection Editor: Kwang-Yong Kim