-
Recent Advances in Tunable Metasurfaces and Their Application in Optics
-
The Key Role of Non-Local Screening in the Environment-Insensitive Exciton Fine Structures of Transition-Metal Dichalcogenide Monolayers
-
Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3
-
Sunlight-Driven Photocatalytic Degradation of Methylene Blue with Facile One-Step Synthesized Cu-Cu2O-Cu3N Nanoparticle Mixtures
-
YCl3-Substituted CsPbI3 Perovskite Nanorods for Efficient Red-Light-Emitting Diodes
Journal Description
Nanomaterials
Nanomaterials
is an international, peer-reviewed, open access journal published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 11.7 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journals for Nanomaterials include: Nanomanufacturing and Applied Nano.
Impact Factor:
5.3 (2022);
5-Year Impact Factor:
5.4 (2022)
Latest Articles
Flexible High-Performance and Screen-Printed Symmetric Supercapacitor Using Hierarchical Rodlike V3O7 Inks
Nanomaterials 2023, 13(16), 2282; https://doi.org/10.3390/nano13162282 - 08 Aug 2023
Abstract
►
Show Figures
The emergence of the Internet of things stimulates the pursuit of flexible and miniaturized supercapacitors. As an advanced technology, screen printing displays vigor and tremendous potential in fabricating supercapacitors, but the adoption of high-performance ink is a great challenge. Here, hierarchical V3
[...] Read more.
The emergence of the Internet of things stimulates the pursuit of flexible and miniaturized supercapacitors. As an advanced technology, screen printing displays vigor and tremendous potential in fabricating supercapacitors, but the adoption of high-performance ink is a great challenge. Here, hierarchical V3O7 with rodlike texture was prepared via a facile template–solvothermal route; and the morphology, component, and valence bond information are characterized meticulously. Then, the screen-printed inks composed of V3O7, acetylene black, and PVDF are formulated, and the rheological behaviors are studied detailedly. Benefitting from the orderly aligned ink, the optimal screen-printed electrode can exhibit an excellent specific capacitance of 274.5 F/g at 0.3 A/g and capacitance retention of 81.9% after 5000 cycles. In addition, a flexible V3O7 symmetrical supercapacitor (SSC) is screen-printed and assembled on the Ag current collector, exhibiting a decent areal specific capacitance of 322.5 mF/cm2 at 0.5 mA/cm2, outstanding cycling stability of 90.8% even after 5000 cycles, satisfactory maximum energy density of 129.45 μWh/cm2 at a power density of 0.42 mW/cm2, and remarkable flexibility and durability. Furthermore, a single SSC enables the showing of an actual voltage of 1.70 V after charging, and no obvious self-discharge phenomenon is found, revealing the great applied value in supply power. Therefore, this work provides a facile and low-cost reference of screen-printed ink for large-scale fabrication of flexible supercapacitors.
Full article
Open AccessArticle
Anti-Reflective Coatings Produced via Atomic Layer Deposition for Hybrid Polymer 3D Micro-Optics
by
, , , , and
Nanomaterials 2023, 13(16), 2281; https://doi.org/10.3390/nano13162281 - 08 Aug 2023
Abstract
The increasing demand for optics quality requires the lowest optical power loss, which can occur from unwanted reflections. Laser direct writing (LDW) allows for the fabrication of complex structures, which is particularly advantageous in micro-optic applications. This research demonstrates the possibility of forming
[...] Read more.
The increasing demand for optics quality requires the lowest optical power loss, which can occur from unwanted reflections. Laser direct writing (LDW) allows for the fabrication of complex structures, which is particularly advantageous in micro-optic applications. This research demonstrates the possibility of forming an anti-reflective coating on hybrid polymer micro-lenses fabricated by employing LDW without changing their geometry. Such coating deposited via atomic layer deposition (ALD) decreased the reflection from 3.3% to 0.1% at a wavelength of 633 nm for one surface of hybrid organic–inorganic SZ2080™ material. This research validates the compatibility of ALD with LDW 3D multiphoton lithography synergistically, expanding its applications on optical grade sub-100 μm scale micro-optics.
Full article
(This article belongs to the Special Issue Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends)
►▼
Show Figures

Figure 1
Open AccessArticle
Magnetic Properties of a High-Pressure Torsion Deformed Co-Zr Alloy
by
, , , , and
Nanomaterials 2023, 13(16), 2280; https://doi.org/10.3390/nano13162280 - 08 Aug 2023
Abstract
►▼
Show Figures
Co-Zr amorphous alloys exhibit soft magnetic properties, whereas the Co-rich crystalline magnetic phases in this alloy system displayed a hard magnetic behavior. In this study, an initial two-phase Co-Zr composite with an overall composition of 75 at.% Co and 25 at.% Zr was
[...] Read more.
Co-Zr amorphous alloys exhibit soft magnetic properties, whereas the Co-rich crystalline magnetic phases in this alloy system displayed a hard magnetic behavior. In this study, an initial two-phase Co-Zr composite with an overall composition of 75 at.% Co and 25 at.% Zr was processed by high-pressure torsion (HPT), and the effects of severe plastic deformation and subsequent thermal treatment on the composite’s structural evolution and its magnetic properties were investigated. HPT processing allowed us to achieve an amorphous microstructure with low coercivity in its as-deformed state. To further tune the alloy’s magnetic properties and study its crystallization behavior, various annealed states were investigated. The microstructural properties were correlated with the magnetic properties, and a decreasing coercivity with increasing annealing temperatures was observed despite the onset of crystallization in the amorphous alloy. At higher annealing temperatures, coercivity increased again. The results appear promising for obtaining tuneable rare-earth free magnetic materials by severe plastic deformation.
Full article

Figure 1
Open AccessArticle
Structural and Mechanical Properties of Doped Tobermorite
Nanomaterials 2023, 13(16), 2279; https://doi.org/10.3390/nano13162279 - 08 Aug 2023
Abstract
As calcium silicate hydrate (C-S-H) is the main binding phase in concrete, understanding the doping behavior of impurity elements in it is important for optimizing the structure of cementitious materials. However, most of the current studies focus on cement clinker, and the doping
[...] Read more.
As calcium silicate hydrate (C-S-H) is the main binding phase in concrete, understanding the doping behavior of impurity elements in it is important for optimizing the structure of cementitious materials. However, most of the current studies focus on cement clinker, and the doping mechanism of impurity elements in hydrated calcium silicate is not yet fully understood. The hydrated calcium silicate component is complex, and its structure is very similar to that of the tobermorite mineral family. In this study, the effects of three different dopants (Mg, Sr and Ba) on a representing structure of C-S-H—tobermorite—was systematically explored using densify functional theory (DFT) calculations. The calculations show that Mg doping leads to a decrease in lattice volume and causes obvious structure and coordination changes of magnesium–oxygen polyhedra. This may be the reason why high formation energy is required for the Mg-doped tobermorite. Meanwhile, doping only increases the volume of the Sr- and Ba-centered oxygen polyhedra. Specifically, the Mg-doped structure exhibits higher chemical stability and shorter interatomic bonding. In addition, although Mg doping distorts the structure, the stronger chemical bonding between Mg-O atoms also improves the compressive (~1.99% on average) and shear resistance (~2.74% on average) of tobermorillonite according to the elastic modulus and has less effect on the anisotropy of the Young’s modulus. Our results suggest that Mg doping is a promising strategy for the optimized structural design of C-S-H.
Full article
(This article belongs to the Special Issue Nanomechanics, Plasticity and Fracture)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Effect of Water on CO2 Adsorption on CaNaY Zeolite: Formation of Ca2+(H2O)(CO2), Ca2+(H2O)(CO2)2 and Ca2+(H2O)2(CO2) Complexes
Nanomaterials 2023, 13(16), 2278; https://doi.org/10.3390/nano13162278 - 08 Aug 2023
Abstract
Efficient CO2 capture materials must possess a high adsorption capacity, suitable CO2 adsorption enthalpy and resistance to water vapor. We have recently reported that Ca2+ cations exchanged in FAU zeolite can attach up to three CO2 molecules. Here we
[...] Read more.
Efficient CO2 capture materials must possess a high adsorption capacity, suitable CO2 adsorption enthalpy and resistance to water vapor. We have recently reported that Ca2+ cations exchanged in FAU zeolite can attach up to three CO2 molecules. Here we report the effect of water on the adsorption of CO2. Formation of Ca2+(H2O)(CO2), Ca2+(H2O)(CO2)2 and Ca2+(H2O)2(CO2) mixed ligand complexes were established. The Ca2+(H2O)(CO2) species are readily formed even at ambient temperature and are characterized by ν(12CO2) and ν(13CO2) infrared bands at 2358 and 2293 cm−1, respectively. The Ca2+(H2O)(CO2)2 species are produced at low temperature and are identified by a ν(13CO2) band at 2291 cm−1. In the presence of large amounts of water, Ca2+(H2O)2(CO2) complexes were also evidenced by ν(12CO2) and ν(13CO2) bands at 2348 and 2283 cm−1, respectively. The results demonstrate that, although it has a negative effect on CO2 adsorption uptake, water in moderate amounts does not block CO2 adsorption sites.
Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanotechnologies for Environmental Remediation, Chemical Conversion, and Energy Production)
►▼
Show Figures

Figure 1
Open AccessArticle
Synthesis of Composites for the Removal of F- Anions
by
, , , , , , and
Nanomaterials 2023, 13(16), 2277; https://doi.org/10.3390/nano13162277 - 08 Aug 2023
Abstract
This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer’s method. Fourier transform infrared spectrometry,
[...] Read more.
This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer’s method. Fourier transform infrared spectrometry, X-ray, Raman spectroscopy, thermogravimetric analysis, surface charge distribution, specific surface area and porosity, adsorption isotherms, and the van’t Hoff equation are used for the characterization of the synthesized materials. Results show that the addition of amines with ferrihydrite generates wrinkles on the surface layers, suggesting a successful incorporation of nitrogen onto the graphene oxide; and as a consequence, the adsorption capacity per unit area of the materials is increased.
Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (Volume II))
►▼
Show Figures

Figure 1
Open AccessArticle
Development and Upscaling of SiO2@TiO2 Core-Shell Nanoparticles for Methylene Blue Removal
by
, , , , , and
Nanomaterials 2023, 13(16), 2276; https://doi.org/10.3390/nano13162276 - 08 Aug 2023
Abstract
SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, reproducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation, with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained by the
[...] Read more.
SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, reproducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation, with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained by the classical Stöber method and then coated with a thin layer of TiO2, followed by calcination or hydrothermal treatments. The properties of SiO2@TiO2 core-shell NPs resulted from the synergy between the photocatalytic properties of TiO2 and the adsorptive properties of SiO2. The synthesized NPs were characterized using FT-IR spectroscopy, HR-TEM, FE–SEM, and EDS. Zeta potential, specific surface area, and porosity were also determined. The results show that the synthesized SiO2@TiO2 NPs that are hydrothermally treated have similar behaviors and properties regardless of the hydrothermal treatment type and synthesis scale and better performance compared to the SiO2@TiO2 calcined and TiO2 reference samples. The generation of reactive species was determined by EPR, and the photocatalytic activity was evaluated by the methylene blue (MB) removal in aqueous solution under UV light. Hydrothermally treated SiO2@TiO2 showed the highest adsorption capacity and photocatalytic removal of almost 100% of MB after 15 min in UV light, 55 and 89% higher compared to SiO2 and TiO2 reference samples, respectively, while the SiO2@TiO2 calcined sample showed 80%. It was also observed that the SiO2-containing samples showed a considerable adsorption capacity compared to the TiO2 reference sample, which improved the MB removal. These results demonstrate the efficient synergy effect between SiO2 and TiO2, which enhances both the adsorption and photocatalytic properties of the nanomaterial. A possible photocatalytic mechanism was also proposed. Also noteworthy is that the performance of the upscaled HT1 sample was similar to one of the lab-scale synthesized samples, demonstrating the potentiality of this synthesis methodology in producing candidate nanomaterials for the removal of contaminants from wastewater.
Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation)
►▼
Show Figures

Figure 1
Open AccessCommunication
A Novel Atomic-Level Post-Etch-Surface-Reinforcement Process for High-Performance p-GaN Gate HEMTs Fabrication
by
, , , , , , , , , , , , , , , and
Nanomaterials 2023, 13(16), 2275; https://doi.org/10.3390/nano13162275 - 08 Aug 2023
Abstract
A novel atomic-level post-etch-surface-reinforcement (PESR) process is developed to recover the p-GaN etching induced damage region for high performance p-GaN gate HEMTs fabrication. This process is composed of a self-limited surface modification step with O2 plasma, following by an oxide
[...] Read more.
A novel atomic-level post-etch-surface-reinforcement (PESR) process is developed to recover the p-GaN etching induced damage region for high performance p-GaN gate HEMTs fabrication. This process is composed of a self-limited surface modification step with O2 plasma, following by an oxide removal step with BCl3 plasma. With PESR process, the AlGaN surface morphology after p-GaN etching was comparable to the as-epitaxial level by AFM characterization, and the AlGaN lattice crystallization was also recovered which was measured in a confocal Raman system. The electrical measurement further confirmed the significant improvement of AlGaN surface quality, with one-order of magnitude lower surface leakage in a metal-semiconductor (MS) Schottky-diode and 6 times lower interface density of states (Dit) in a MIS C-V characterization. The XPS analysis of Al2O3/AlGaN showed that the p-GaN etching induced F-byproduct and Ga-oxide was well removed and suppressed by PESR process. Finally, the developed PESR process was successfully integrated in p-GaN gate HEMTs fabrication, and the device performance was significantly enhanced with ~20% lower of on-resistance and ~25% less of current collapse at Vds,Q bias of 40 V, showing great potential of leverage p-GaN gate HEMTs reliability.
Full article
(This article belongs to the Special Issue Functional Micro-/Nanostructures: Advanced Fabrication and Application)
►▼
Show Figures

Figure 1
Open AccessReview
Design of Bifunctional Nanocatalysts Based on Zeolites for Biomass Processing
Nanomaterials 2023, 13(16), 2274; https://doi.org/10.3390/nano13162274 - 08 Aug 2023
Abstract
Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite supports have received considerable attention due to their excellent catalytic properties in numerous reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate) biomass processing. In this short review, we
[...] Read more.
Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite supports have received considerable attention due to their excellent catalytic properties in numerous reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate) biomass processing. In this short review, we discuss major approaches to the preparation of NPs in zeolites, concentrating on methods that allow for the best interplay (synergy) between metal and acid sites, which is normally achieved for small NPs well-distributed through zeolite. We focus on the modification of zeolites to provide structural integrity and controlled acidity, which can be accomplished by the incorporation of certain metal ions or elements. The other modification avenue is the adjustment of zeolite morphology, including the creation of numerous defects for the NP entrapment and designed hierarchical porosity for improved mass transfer. In this review, we also provide examples of synergy between metal and acid sites and emphasize that without density functional theory calculations, many assumptions about the interactions between active sites remain unvalidated. Finally, we describe the most interesting examples of direct and indirect biomass (waste) processing for the last five years.
Full article
(This article belongs to the Special Issue Applications of Nanocatalysts in Biomass Conversion: Volume II)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Theoretical Study of the Defects and Doping in Tuning the Electrocatalytic Activity of Graphene for CO2 Reduction
Nanomaterials 2023, 13(15), 2273; https://doi.org/10.3390/nano13152273 - 07 Aug 2023
Abstract
►▼
Show Figures
The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural
[...] Read more.
The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural tunability, and environmental friendliness, have rendered them promising materials in this area. By doping heteroatoms or artificially inducing defects in graphene, its catalytic performance can be effectively improved. In this work, the mechanisms underlying the CO2 reduction reaction on 10 graphene-based catalysts were systematically studied. N/B/O-codoped graphene with a single-atom vacancy defect showed the best performance and substantial improvement in catalytic activity compared with pristine graphene. The specific roles of the doped elements, including B, N, and O, as well as the defects, are discussed in detail. By analysing the geometric and electronic structures of the catalysts, we showed how the doped heteroatoms and defects influence the catalytic reaction process and synergistically promoted the catalytic efficiency of graphene.
Full article

Figure 1
Open AccessArticle
Enhanced Lithium Storage Performance of α-MoO3/CNTs Composite Cathode
Nanomaterials 2023, 13(15), 2272; https://doi.org/10.3390/nano13152272 - 07 Aug 2023
Abstract
Orthorhombic molybdenum oxide (α-MoO3), as a one-layered pseudocapacitive material, has attracted widespread attention due to its high theoretical lithium storage specific capacity (279 mAh/g) for lithium-ion batteries’ cathode. Nevertheless, low conductivity, slack reaction kinetics, and large volume change during Li+
[...] Read more.
Orthorhombic molybdenum oxide (α-MoO3), as a one-layered pseudocapacitive material, has attracted widespread attention due to its high theoretical lithium storage specific capacity (279 mAh/g) for lithium-ion batteries’ cathode. Nevertheless, low conductivity, slack reaction kinetics, and large volume change during Li+ ions intercalation and deintercalation seriously limit the practical application of α-MoO3. Herein, we added a small number of CNTs (1.76%) to solve these problems in a one-step hydrothermal process for preparing the α-MoO3/CNTs composite. Because of the influence of CNTs, the α-MoO3 nanobelt in the α-MoO3/CNTs composite had a larger interlayer spacing, which provided more active sites and faster reaction kinetics for lithium storage. In addition, CNTs formed a three-dimensional conductive network between α-MoO3 nanobelts, enhanced the electrical conductivity of the composite, accelerated the electron conduction, shortened the ion transport path, and alleviated the structural fragmentation caused by the volume expansion during the α-MoO3 intercalation and deintercalation of Li+ ions. Therefore, the α-MoO3/CNTs composite cathode had a significantly higher rate performance and cycle life. After 150 cycles, the pure α-MoO3 cathode had almost no energy storage, but α-MoO3/CNTs composite cathode still retained 93 mAh/g specific capacity.
Full article
(This article belongs to the Special Issue Nanostructures for Wastewater Treatment and Energy Conversion)
►▼
Show Figures

Figure 1
Open AccessArticle
Methane Catalytic Combustion under Lean Conditions over Pristine and Ir-Loaded La1−xSrxMnO3 Perovskites: Efficiency, Hysteresis, and Time-on-Stream and Thermal Aging Stabilities
by
, , , , and
Nanomaterials 2023, 13(15), 2271; https://doi.org/10.3390/nano13152271 - 07 Aug 2023
Abstract
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of
[...] Read more.
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of unconverted methane escaping into the atmosphere. CH4 emissions are a major contributor to the ‘greenhouse effect’, and therefore, they need to be effectively reduced. Catalytic CH4 oxidation is a promising method that can be used for this purpose. Detailed studies of the activity, oxidative thermal aging, and the time-on-stream (TOS) stability of pristine La1−xSrxMnO3 perovskites (LSXM; X = % substitution of La with Sr = 0, 30, 50 and 70%) and iridium-loaded Ir/La1−xSrxMnO3 (Ir/LSXM) perovskite catalysts were conducted in a temperature range of 400–970 °C to achieve complete methane oxidation under excess oxygen (lean) conditions. The effect of X on the properties of the perovskites, and thus, their catalytic performance during heating/cooling cycles, was studied using samples that were subjected to various pretreatment conditions in order to gain an in-depth understanding of the structure–activity/stability correlations. Large (up to ca. 300 °C in terms of T50) inverted volcano-type differences in catalytic activity were found as a function of X, with the most active catalysts being those where X = 0%, and the least active were those where X = 50%. Inverse hysteresis phenomena (steady-state rate multiplicities) were revealed in heating/cooling cycles under reaction conditions, the occurrence of which was found to depend strongly on the employed catalyst pre-treatment (pre-reduction or pre-oxidation), while their shape and the loop amplitude were found to depend on X and the presence of Ir. All findings were consistently interpreted, which involved a two-term mechanistic model that utilized the synergy of Eley–Rideal and Mars–van Krevelen kinetics.
Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Energy Conversion and Environmental Catalysis)
►▼
Show Figures

Graphical abstract
Open AccessCommunication
Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire
Nanomaterials 2023, 13(15), 2270; https://doi.org/10.3390/nano13152270 - 07 Aug 2023
Abstract
A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned)
[...] Read more.
A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) and the convex (endo-positioned) surface of WGNR with different curvatures via Van der Waals interaction. The density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods were adopted to calculate the transport properties of these devices at various bias voltages (VS) and gate voltages (VG), such as the conductance, spin-polarized currents, transmission spectra (TS), local density of states (LDOS), and scattering states. The results indicate that the position of V7(Bz)8 and the bending curvature of WGNR play important roles in tuning the transport properties of these four-terminal devices. A spin-polarized transport property is induced for these four-terminal devices by the spin-polarized nature of V7(Bz)8. Particularly, the down-spin channel disturbs strongly on the source-to-drain conductance of WGNR when V7(Bz)8 is endo-positioned crossing the WGNR. Our findings on the novel property of four-terminal V7(Bz)8-WGNR devices provide useful guidelines for achieving flexible graphene-based electronic nanodevices by attaching other similar multidecker metal-arene nanowires.
Full article
(This article belongs to the Special Issue Current Advances in Nanoelectronics, Nanosensors and Devices)
►▼
Show Figures

Figure 1
Open AccessReview
Recent Progress of Photothermal Therapy Based on Conjugated Nanomaterials in Combating Microbial Infections
Nanomaterials 2023, 13(15), 2269; https://doi.org/10.3390/nano13152269 - 07 Aug 2023
Abstract
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to
[...] Read more.
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to the choice of photothermal agent. Conjugated nanomaterials are potential candidates for photothermal agents because of their easy modification, excellent photothermal conversion efficiency, good photostability, and biodegradability. In this paper, the application of photothermal agents based on conjugated nanomaterials in photothermal antimicrobial treatment is reviewed, including conjugated small molecules, conjugated oligomers, conjugated polymers, and pseudo-conjugated polymers. At the same time, the application of conjugated nanomaterials in the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) is briefly introduced. Finally, the research status, limitations, and prospects of photothermal therapy using conjugated nanomaterials as photothermal agents are discussed.
Full article
(This article belongs to the Special Issue Applications of Smart Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessCommunication
Controlled Fabrication of Hierarchically Structured MnO2@NiCo-LDH Nanoarrays for Efficient Electrocatalytic Urea Oxidization
Nanomaterials 2023, 13(15), 2268; https://doi.org/10.3390/nano13152268 - 07 Aug 2023
Abstract
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled
[...] Read more.
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled fabrication of hierarchically structured nanomaterials as potential catalysts for UOR. The prepared MnO2@NiCo-LDH hybrid catalyst demonstrates remarkable improvements in reaction kinetics, benefiting from synergistic enhancements in charge transfer and efficient mass transport facilitated by its unique hierarchical architecture. Notably, the catalyst exhibits an exceptionally low onset potential of 1.228 V and requires only 1.326 V to achieve an impressive current density of 100 mA cm−2, representing a state-of-the-art performance in UORs. These findings highlight the tremendous potential of this innovative material designing strategy to drive advancements in electrocatalytic processes.
Full article
(This article belongs to the Section Energy and Catalysis)
►▼
Show Figures

Figure 1
Open AccessReview
Intensity-Dependent Optical Response of 2D LTMDs Suspensions: From Thermal to Electronic Nonlinearities
by
, , , , , , and
Nanomaterials 2023, 13(15), 2267; https://doi.org/10.3390/nano13152267 - 07 Aug 2023
Abstract
The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light–matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared
[...] Read more.
The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light–matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with semiconducting and metallic optical properties. In this article, we review most of our work in studies of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the nonlinear optical response of semiconducting MoS2, MoSe2, MoTe2, WS2, semimetallic WTe2, ZrTe2, and metallic NbS2 and NbSe2. The nonlinear optical response from a thermal to non-thermal origin was studied, and the nonlinear refraction index and nonlinear absorption coefficient, where present, were measured. Theoretical support was given to explain the origin of the nonlinear responses, which is very dependent on the spectro-temporal regime of the optical source employed in the studies.
Full article
(This article belongs to the Special Issue Advances in Photonic and Plasmonic Nanomaterials – Volume II)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Synergistic Effect of Y Doping and Reduction of TiO2 on the Improvement of Photocatalytic Performance
Nanomaterials 2023, 13(15), 2266; https://doi.org/10.3390/nano13152266 - 07 Aug 2023
Abstract
Pure TiO2 and 3% Y-doped TiO2 (3% Y-TiO2) were prepared by a one-step hydrothermal method. Reduced TiO2 (TiO2-H2) and 3% Y-TiO2 (3% Y-TiO2-H2) were obtained through the thermal conversion
[...] Read more.
Pure TiO2 and 3% Y-doped TiO2 (3% Y-TiO2) were prepared by a one-step hydrothermal method. Reduced TiO2 (TiO2-H2) and 3% Y-TiO2 (3% Y-TiO2-H2) were obtained through the thermal conversion treatment of Ar-H2 atmosphere at 500 °C for 3 h. By systematically comparing the crystalline phase, structure, morphological features, and photocatalytic properties of 3% Y-TiO2-H2 with pure TiO2, 3% Y-TiO2, and TiO2-H2, the synergistic effect of Y doping and reduction of TiO2 was obtained. All samples show the single anatase phase, and no diffraction peak shift is observed. Compared with single-doped TiO2 and single-reduced TiO2, 3% Y-TiO2-H2 exhibits the best photocatalytic performance for the degradation of RhB, which can be totally degraded in 20 min. The improvement of photocatalytic performance was attributed to the synergistic effect of Y doping and reduction treatment. Y doping broadened the range of light absorption and reduced the charge recombination rates, and the reduction treatment caused TiO2 to be enveloped by disordered shells. The remarkable feature of reduced TiO2 by H2 is its disordered shell filled with a limited amount of oxygen vacancies (OVs) or Ti3+, which significantly reduces the Eg of TiO2 and remarkably increases the absorption of visible light. The synergistic effect of Y doping, Ti3+ species, and OVs play an important role in the improvement of photocatalytic performances. The discovery of this work provides a new perspective for the improvement of other photocatalysts by combining doping and reduction to modify traditional photocatalytic materials and further improve their performance.
Full article
(This article belongs to the Section Energy and Catalysis)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effect of Nanobubble Water Containing Cordyceps Extract and Withaferin A on Free Fatty Acid-Induced Lipid Accumulation in HepG2 Cells
Nanomaterials 2023, 13(15), 2265; https://doi.org/10.3390/nano13152265 - 07 Aug 2023
Abstract
Cordyceps extract and withaferin A (Wi-A) are natural compounds that have therapeutic effects on non-alcoholic fatty liver disease (NAFLD). However, their efficacy is limited and a long treatment duration is usually required. To enhance their efficiency, the synergistic effects of nanobubble water (NBW)
[...] Read more.
Cordyceps extract and withaferin A (Wi-A) are natural compounds that have therapeutic effects on non-alcoholic fatty liver disease (NAFLD). However, their efficacy is limited and a long treatment duration is usually required. To enhance their efficiency, the synergistic effects of nanobubble water (NBW) derived from nitrogen, hydrogen, and oxygen gases were investigated. Results showed that the physical properties of all three NBWs, including nanobubble density (108 particles/mL) and zeta potential (below −22 mV), were stable during 48 h of storage. Hydrogen and nitrogen NBWs did not reduce, but instead promoted, free fatty acid-induced lipid accumulation in HepG2 cells. In contrast, oxygen NBW synergistically enhanced the effects of cordyceps extract and Wi-A. The lipid content decreased by 29% and 33% in the oxygen NBW + cordyceps extract and oxygen NBW + Wi-A groups, respectively, compared to reductions of 22% and 16% by aqueous extracts without NB. This study found that NBW may enhance the lipid-reducing effects of natural compounds, such as cordyceps extract and withaferin A, in hepatic cells. Further studies in animal experiments are needed to determine whether NBW has a potential application in NAFLD.
Full article
(This article belongs to the Special Issue Micro/Nanobubbles for Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Study on Oxygen Evolution Reaction of Ir Nanodendrites Supported on Antimony Tin Oxide
Nanomaterials 2023, 13(15), 2264; https://doi.org/10.3390/nano13152264 - 07 Aug 2023
Abstract
In this study, the iridium nanodendrites (Ir NDs) and antimony tin oxide (ATO)-supported Ir NDs (Ir ND/ATO) were prepared by a surfactant-mediated method to investigate the effect of ATO support and evaluate the electrocatalytic activity for the oxygen evolution reaction (OER). The nano-branched
[...] Read more.
In this study, the iridium nanodendrites (Ir NDs) and antimony tin oxide (ATO)-supported Ir NDs (Ir ND/ATO) were prepared by a surfactant-mediated method to investigate the effect of ATO support and evaluate the electrocatalytic activity for the oxygen evolution reaction (OER). The nano-branched Ir ND structures were successfully prepared alone or supported on ATO. The Ir NDs exhibited major diffraction peaks of the fcc Ir metal, though the Ir NDs consisted of metallic Ir as well as Ir oxides. Among the Ir ND samples, Ir ND2 showed the highest mass-based OER catalytic activity (116 mA/mg at 1.8 V), while it suffered from high degradation in activity after a long-term test. On the other hand, Ir ND2/ATO had OER activity of 798 mA/mg, and this activity remained >99% after 100 cycles of LSV and the charge transfer resistance increased by less than 3 ohm. The enhanced durability of the OER mass activities of Ir ND2/ATO catalysts over Ir NDs and Ir black could be attributed to the small crystallite size of Ir and the increase in the ratio of Ir (III) to Ir (IV), improving the interactions between the Ir NDs and the ATO support.
Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (Volume II))
►▼
Show Figures

Figure 1
Open AccessArticle
Temperature-Dependent Optical Properties of Oxidized Graphenes
by
, , , , , , , , , , and
Nanomaterials 2023, 13(15), 2263; https://doi.org/10.3390/nano13152263 - 07 Aug 2023
Abstract
In this study, we investigate how changing important synthesis-related parameters can affect and control the optical characteristics of graphene oxide (GO) and reduced graphene oxide (rGO). These parameters include drying time and reduction time at two different temperatures. We obtain an understanding of
[...] Read more.
In this study, we investigate how changing important synthesis-related parameters can affect and control the optical characteristics of graphene oxide (GO) and reduced graphene oxide (rGO). These parameters include drying time and reduction time at two different temperatures. We obtain an understanding of their impact on optical transitions, optical bandgap, absorption coefficient, and absorbance spectrum width by analyzing these factors. Accordingly, GO has an optical bandgap of about 4 eV, which is decreased by the reduction process to 1.9 eV. Both GO and rGO display greater absorption in the visible spectrum, which improves photon capture and boosts efficiency in energy conversion applications. Additionally, our results show that GO and rGO have higher absorption coefficients than those previously reported for dispersions of exfoliated graphene. Defects in GO and rGO, as well as the presence of functional oxygen groups, are the main contributors to this increased absorption. Several measurements are carried out, including spectroscopic and morphological studies, to further support our findings.
Full article
(This article belongs to the Special Issue Functional Graphene-Based Nanodevices)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Nanomaterials Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Analytica, Molecules, Nanomaterials, Polymers, Separations
Nanomaterials in Green Analytical Chemistry
Topic Editors: George Zachariadis, Rosa Peñalver, Natalia ManousiDeadline: 15 August 2023
Topic in
JNT, Nanomaterials, Pharmaceuticals, Pharmaceutics, JFB
New Challenges in Ocular Drug Delivery
Topic Editors: Rosario Pignatello, Hugo Almeida, Debora Santonocito, Carmelo PugliaDeadline: 31 August 2023
Topic in
Applied Sciences, Fluids, Materials, Nanomaterials, Polymers
Advances and Applications of 2D Materials, 2nd Volume
Topic Editors: Filippo Giannazzo, Ivan ShtepliukDeadline: 30 September 2023
Topic in
Catalysts, Energies, Hydrogen, Molecules, Nanomaterials
Hydrogen Generation, Storage, and Utilization
Topic Editors: In-Hwan Lee, Duy Thanh Tran, Vandung DaoDeadline: 31 October 2023

Conferences
27 October–10 November 2023
The 4th International Electronic Conference on Applied Sciences (ASEC2023)

Special Issues
Special Issue in
Nanomaterials
Hierarchical Nanostructured Materials for Multifunctional Applications
Guest Editor: Xusheng DuDeadline: 11 August 2023
Special Issue in
Nanomaterials
Excitons and Phonons in Two-Dimensional Materials: From Fundamental to Applications
Guest Editor: Maciej MolasDeadline: 20 August 2023
Special Issue in
Nanomaterials
Identification and Quantification of Nanomaterials
Guest Editor: Hubert RauscherDeadline: 31 August 2023
Special Issue in
Nanomaterials
Design of Nanocatalysts and Electrodes: Application to Fuel Cell and Water Electrolysis
Guest Editor: Namgee JungDeadline: 10 September 2023
Topical Collections
Topical Collection in
Nanomaterials
Process Intensification, Process Design and Green Techniques for Nanomaterials Production and Applications
Collection Editors: Marco Stoller, Giorgio Vilardi
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: New Trends in Inorganic Nanoparticles and Composites from Preparation to Applications
Collection Editors: Félix Zamora, Edward H. Lester
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: Synthesis and Applications of Nanomaterials for Renewable Energies
Collection Editors: Efrat Lifshitz, David Marrero-López
Topical Collection in
Nanomaterials
Magnetic Nanostructured Materials: Synthesis, Characterization and Their Cutting-Edge Applications
Collection Editors: Vasileios Tzitzios, Georgia Basina